Skip to main content
Log in

Molecular docking: The role of noncovalent interactions in the formation of protein-nucleotide and protein-peptide complexes

  • Review
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Knowledge of the spatial structure of complexes formed by cellular proteins and membrane receptors with their respective ligands is an important step towards understanding the mechanisms of their functioning. Rational drug design and the search for new therapeutically active compounds also require structural information on the interaction of prototypic drugs with the target protein. The present review briefly describes the main computational methods of molecular docking that are used to predict the conformation of a ligand bound to the active center of a protein. Approaches enabling an increase of the precision and efficiency of the currently used docking algorithms are exemplified by the recent projects of the Laboratory of Biomolecular Modeling of IBCh RAS. Special attention is paid to hydrophilic and hydrophobic interactions, as well as to the stacking phenomena that account for the molecular recognition of specific ligand fragments. These types of contacts are often inadequately described by the algorithms of the estimation of the intermolecular interaction energy of the existing docking programs (scoring functions), this ultimately leading to erroneous predictions of the three-dimensional structure of complexes. Therefore, a thorough consideration of these interactions is one of the most important tasks of molecular modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SF:

scoring function

MHP:

molecular hydrophobic potential

NAD:

nicotinamideadeninedinucleotide

FAD:

flavineadeninedinucleotide

PDB:

the database of three-dimensional protein structures (Protein Data Bank)

References

  1. Bursulaya, B.D., Totrov, M., Abagyan, R., and Brooks, C.L., J. Comput. Aided Mol. Des., 2003, vol. 17, pp. 755–763.

    Article  CAS  PubMed  Google Scholar 

  2. Schulz-Gasch, T. and Stahl, M., J. Mol. Model., 2003, vol. 9, pp. 47–57.

    CAS  PubMed  Google Scholar 

  3. Ferrara, P., Gohlke, H., Price, D.J., Klebe, G., and Brooks, C.L., J. Med. Chem., 2004, vol. 47, pp. 3032–3047.

    Article  CAS  PubMed  Google Scholar 

  4. Kellenberger, E., Rodrigo, J., Muller, P., and Rognan, D., PROTEINS, 2004, vol. 57, pp. 225–242.

    Article  CAS  PubMed  Google Scholar 

  5. Kontoyianni, M., McClellan, L.M., and Sokol, G.S., J. Med. Chem., 2004, vol. 47, pp. 558–565.

    Article  CAS  PubMed  Google Scholar 

  6. Perola, E., Walters, W.P., and Charifson, P.S., PROTEINS, 2004, vol. 56, pp. 235–249.

    Article  CAS  PubMed  Google Scholar 

  7. Wang, R., Lu, Y., Fang, X., and Wang, S., J. Chem. Inf. Comput. Sci., 2004, vol. 44, pp. 2114–2125.

    CAS  PubMed  Google Scholar 

  8. Zhou, Z., Felts, A.K., Friesner, R.A., and Levy, R.M., J. Chem. Inf. Model., 2007, vol. 47, pp. 1599–1608.

    Article  CAS  PubMed  Google Scholar 

  9. Cross, J.B., Thompson, D.C., Rai, B.K., Baber, J.C., Fan, K.Y., Hu, Y., and Humblet, C., J. Chem. Inf. Model., 2009, vol. 49, pp. 1455–1474.

    Article  CAS  PubMed  Google Scholar 

  10. Cheng, T., Li, X., Li, Y., Liu, Z., and Wang, R., J. Chem. Inf. Model., 2009, vol. 49, pp. 1079–1093.

    Article  CAS  PubMed  Google Scholar 

  11. Betts, M.J. and Sternberg, M.J., Protein Eng., 1999, vol. 12, pp. 271–283.

    Article  CAS  PubMed  Google Scholar 

  12. Zhong, H., Tran, L.M., and Stang, J.L., J. Mol. Graphics Modell., 2009, vol. 28, pp. 558–575.

    Article  Google Scholar 

  13. Kokh, D.B. and Wenzel, W., J. Med. Chem., 2008, vol. 51, pp. 5919–5931.

    Article  CAS  PubMed  Google Scholar 

  14. Ferrara, P., Curioni, A., Vangrevelinghe, E., Meyer, T., Mordasini, T., Andreoni, W., Acklin, P., and Jacoby, E., J. Chem. Inf. Model., 2006, vol. 46, pp. 254–263.

    Article  CAS  PubMed  Google Scholar 

  15. Thomas, M.P., McInnes, C., and Fischer, P.M., J. Med. Chem., 2006, vol. 49, pp. 92–104.

    Article  CAS  PubMed  Google Scholar 

  16. Jansen, J.M. and Martin, E.J., Curr. Opin. Chem. Biol., 2004, vol. 8, pp. 359–364.

    Article  CAS  PubMed  Google Scholar 

  17. Morley, D.S. and Afshar, M., J. Comput. Aided Mol. Des., 2004, vol. 18, pp. 189–208.

    Article  CAS  PubMed  Google Scholar 

  18. Park, M.S., Dessal, A.L., Smrcka, A.V.., and Stern, H.A., J. Chem. Inf. Model., 2009, vol. 49, pp. 437–443.

    Article  CAS  PubMed  Google Scholar 

  19. Hevener, K.E., Zhao, W., Ball, D.M., Babaoglu, K., Qi, J., White, S.W., and Lee, R.E., J. Chem. Inf. Model., 2009, vol. 49, pp. 444–460.

    Article  CAS  PubMed  Google Scholar 

  20. Deng, W. and Verlinde, C.L.M.J., J. Chem. Inf. Model., 2008, vol. 48, pp. 2010–2020.

    Article  CAS  PubMed  Google Scholar 

  21. Mao, L., Wang, Y., Liu, Y., and Hu, X., J. Mol. Biol., 2004, vol. 336, pp. 787–807.

    Article  CAS  PubMed  Google Scholar 

  22. Saito, M., Go, M., and Shirai, T., Protein Eng. Des. Sel., 2006, vol. 19, pp. 67–75.

    Article  CAS  PubMed  Google Scholar 

  23. Rognan, D., Lauemoller, S.L., Holm, A., Buus, S., and Tschinke, V., J. Med. Chem., 1999, vol. 42, pp. 4650–4658.

    Article  CAS  PubMed  Google Scholar 

  24. Kitchen, D.B., Decornez, H., Furr, J.R., and Bajorath, J., Nat. Rev. Drug. Discov, 2004, vol. 3, pp. 935–949.

    Article  CAS  PubMed  Google Scholar 

  25. Moitessier, N., Englebienne, P., Lee, D., Lawandi, J., and Corbeil, C.R., Br. J. Pharmacol., 2008, vol. 153.

  26. Tuccinardi, T., Comb. Chem. High Throughput Screen, 2009, vol. 12, pp. 303–314.

    Article  CAS  PubMed  Google Scholar 

  27. Zoete, V., Grosdidier, A., and Michielin, O., J. Cell. Mol. Med., 2009, vol. 13, pp. 238–248.

    Article  CAS  PubMed  Google Scholar 

  28. Ewing, T.J., Makino, S., and Skillman, G.A., J. Comput. Aided Mol. Des., 2001, vol. 15, pp. 411–428.

    Article  CAS  PubMed  Google Scholar 

  29. Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V., and Mee, R.P., J. Comput. Aided Mol. Des., 1997, vol. 11, pp. 425–445.

    Article  CAS  PubMed  Google Scholar 

  30. Muegge, I., J. Med. Chem., 2006, vol. 49, pp. 5895–5902.

    Article  CAS  PubMed  Google Scholar 

  31. Mooij, W.T.M. and Verdonk, M.L., PROTEINS, 2005, vol. 61, pp. 272–287.

    Article  CAS  PubMed  Google Scholar 

  32. Amini, A., Shrimpton, P.J., Muggleton, S.H., and Sternberg, M.J., PROTEINS, 2007, vol. 69, pp. 823–831.

    Article  CAS  PubMed  Google Scholar 

  33. Catana, C. and Stouten, P.F.W., J. Chem. Inf. Model., 2007, vol. 47, pp. 85–91.

    Article  CAS  PubMed  Google Scholar 

  34. Laederach, A. and Reilly, P.J., PROTEINS, 2005, vol. 60, pp. 591–597.

    Article  CAS  PubMed  Google Scholar 

  35. Kerzmann, A., Fuhrmann, J., Kohlbacher, O., and Neumann, D., J. Chem. Inf. Model., 2008, vol. 48, pp. 1616–1625.

    Article  CAS  PubMed  Google Scholar 

  36. Pyrkov, T.V., Kosinsky, Y.A., Arseniev, A.S., Priestle, J.P., Jacoby, E., and Efremov, R.G., PROTEINS, 2007, vol. 66, pp. 388–398.

    Article  CAS  PubMed  Google Scholar 

  37. Pyrkov, T.V. and Efremov, R.G., Int. J. Mol. Sci., 2007, vol. 8, pp. 1083–1094.

    Article  CAS  Google Scholar 

  38. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E., Nucleic Acid. Res., 2000, vol. 28, pp. 235–242.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, R., Fang, X., Lu, Y., Yang, C.Y., and Wang, S., J. Med. Chem., 2005, vol. 48, pp. 4111–4119.

    Article  CAS  PubMed  Google Scholar 

  40. Whittaker, M., Floyd, C.D., Brown, P., and Gearing, A.J.H., Chem. Rev., 1999, vol. 99, pp. 2735–2776.

    Article  CAS  PubMed  Google Scholar 

  41. Pyrkov, T.V., Pyrkova, D.V., Balitskaya, E.D., and Efremov, R.G., Acta Naturae, 2009, vol. 1, pp. 124–127.

    Google Scholar 

  42. Efremov, R.G., Chugunov, A.O., Pyrkov, T.V., Priestle, J.P., Arseniev, A.S., and Jacoby, E., Curr. Med. Chem., 2007, vol. 14, pp. 393–415.

    Article  CAS  PubMed  Google Scholar 

  43. Gaillard, P., Carrupt, P.A., Testa, B., and Boudon, A., J. Comput. Aided. Mol. Des., 1994, vol. 8, pp. 83–96.

    Article  CAS  PubMed  Google Scholar 

  44. Testa, B., Carrupt, P.A., Gaillard, P., Billois, F., and Weber, P., Pharm. Res., 1996, vol. 13, pp. 335–343.

    Article  CAS  PubMed  Google Scholar 

  45. Denissiouk, K.A., Rantanen, V.V., and Johnson, M.S., PROTEINS, 2001, vol. 44, pp. 282–291.

    Article  Google Scholar 

  46. Cappello, V., Tramontano, A., and Kock, U., PROTEINS, 2002, vol. 47, pp. 106–115.

    Article  CAS  PubMed  Google Scholar 

  47. Kuttner, Y.Y., Sobolev, V., Raskind, A., and Edelman, M., PROTEINS, 2003, vol. 52, pp. 400–411.

    Article  CAS  PubMed  Google Scholar 

  48. Viswanadhan, V.N., Ghose, A.K., Revankar, G.R., and Robins, R.K., J. Chem. Inf. Comput. Sci., 1989, vol. 29, pp. 163–172.

    CAS  Google Scholar 

  49. Ghose, A.K., Viswanadhan, V.N., and Wendoloski, J.J., J. Phys. Chem., 1998, vol. 102, pp. 3762–3772.

    CAS  Google Scholar 

  50. Wang, R., Gao, I., and Lay, L., Perspect. Drug Discov. Des., 2000, vol. 19, pp. 47–66.

    Article  CAS  Google Scholar 

  51. Klopman, G., Li, J.-Y., Wang, S., and Dimayuga, M., J. Chem. Inf. Comput. Sci., 1994, vol. 34, pp. 752–781.

    CAS  Google Scholar 

  52. Meylan, W.M. and Howard, P.H., J. Pharm. Sci., 1995, vol. 84, pp. 83–92.

    Article  CAS  PubMed  Google Scholar 

  53. Heiden, W., Moeckel, G., and Brickmann, J., J. Comput. Aided. Mol. Des., 1993, vol. 7, pp. 503–514.

    Article  CAS  PubMed  Google Scholar 

  54. Wang, R., Luhua, L., and Shaomeng, W., J. Comp. Aided. Mol. Des., 2002, vol. 16, pp. 11–26.

    Article  CAS  Google Scholar 

  55. Meng, E.C., Kuntz, I.D., Abraham, D.J., and Kellogg, G.E., J. Comput. Aided. Mol. Des., 1994, vol. 8, pp. 299–306.

    Article  CAS  PubMed  Google Scholar 

  56. Efremov, R.G. and Alix, A.J.P., J. Biomol. Struct. Dyn., 1993, vol. 11, pp. 483–507.

    CAS  PubMed  Google Scholar 

  57. Bohm, H.J., J. Comput. Aided Mol. Des., 1994, vol. 8, pp. 243–256.

    Article  CAS  PubMed  Google Scholar 

  58. Exner, T.E., Keil, M., and Brickmann, J., J. Comput. Chem., 2002, vol. 23, pp. 1176–1187.

    Article  CAS  PubMed  Google Scholar 

  59. Pyrkov, T.V., Chugunov, A.O., Krylov, N.A., Nolde, D.E., and Efremov, R.G., Bioinformatics, 2009, vol. 25, pp. 1201–1202.

    Article  CAS  PubMed  Google Scholar 

  60. Pyrkov, T.V., Priestle, J.P., Jacoby, E., and Efremov, R.G., SAR QSAR Environ. Res., 2008, vol. 19, pp. 91–99.

    Article  CAS  PubMed  Google Scholar 

  61. Bree, F., Tayar, N., Van de Waterbeemd, H., Testa, B., and Tillement, J.P., J. Recept. Res., 1986, vol. 6, pp. 381–409.

    CAS  PubMed  Google Scholar 

  62. Contreras, M.L., Wolfe, B.B., and Molinoff, P.B., J. Pharmacol. Exp. Ther., 1986, vol. 237, pp. 154–164.

    CAS  PubMed  Google Scholar 

  63. Contreras, M.L., Wolfe, B.B., and Molinoff, P.B., J. Pharmacol. Exp. Ther., 1986, vol. 237, pp. 165–172.

    CAS  PubMed  Google Scholar 

  64. Novoseletsky, V.N., Pyrkov, T.V., and Efremov, R.G., SAR QSAR Environ. Res. 2010, (in press).

  65. Gotoh, O., Adv. Biophys., 1983, vol. 16, pp. 1–52.

    Article  CAS  PubMed  Google Scholar 

  66. Sponer, J., Leszczynski, J., and Hobza, P., J. Biomol. Struct. Dyn., 1996, vol. 14, pp. 117–135.

    CAS  PubMed  Google Scholar 

  67. Jorgensen, W.L. and Severance, D.L., J. Am. Chem. Soc., 1990, vol. 112, pp. 4768–4774.

    Article  CAS  Google Scholar 

  68. Waters, M.L., Curr. Opin. Chem. Biol., 2002, vol. 6, pp. 736–741.

    Article  CAS  PubMed  Google Scholar 

  69. Meyer, E.A., Castellano, R.K., and Diederich, F., Angew. Chem., Int. Ed. Engl., 2003, vol. 42, pp. 1210–1250.

    Article  CAS  Google Scholar 

  70. Tewari, A.K. and Dubey, R., Bioorg. Med. Chem., 2008, vol. 16, pp. 126–143.

    Article  CAS  PubMed  Google Scholar 

  71. Traxler, P. and Furet, P., Pharmacol. Ther., 1999, vol. 82, pp. 195–206.

    Article  CAS  PubMed  Google Scholar 

  72. Sigel, H. and Griesser, R., Chem. Soc. Rev., 2005, vol. 34, pp. 875–900.

    Article  CAS  PubMed  Google Scholar 

  73. Deng, Z., Chuaqui, C., and Singh, J., J. Med. Chem., 2004, vol. 47, pp. 337–344.

    Article  CAS  PubMed  Google Scholar 

  74. Chakrabarti, P. and Bhattacharyya, R., Prog. Biophys. Mol. Biol., 2007, vol. 95, pp. 83–137.

    Article  CAS  PubMed  Google Scholar 

  75. Chelli, R., Gervasio, F.L., Procacci, P., and Schettino, V., J. Am. Chem. Soc., 2002, vol. 124, pp. 6133–6143.

    Article  CAS  PubMed  Google Scholar 

  76. Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M., and Tanabe, K., J. Am. Chem. Soc., 2001, vol. 124, pp. 104–112.

    Article  Google Scholar 

  77. Small, D., Zaitsev, V., Jung, Y., Rosokha, S.V., Head-Gordon, M., and Kochi, J.K., J. Am. Chem. Soc., 2004, vol. 126, pp. 13850–13858.

    Article  CAS  PubMed  Google Scholar 

  78. Sato, T., Tsuneda, T., and Hirao, K., J. Chem. Phys., 2005, vol. 123, p. 104307.

    Article  PubMed  Google Scholar 

  79. Malathy, SonyS.M. and Ponnuswamy, M.N., Crystal Growth Design, 2006, vol. 6, pp. 736–742.

    Article  Google Scholar 

  80. Stroganov, O.V., Novikov, F.N., Stroylov, V.S., Kulkov, V., and Chilov, G.G., J. Chem. Inf. Model., 2008, vol. 48, pp. 2371–2385.

    Article  CAS  PubMed  Google Scholar 

  81. Jones, G., Willett, P., Glen, R.C., Leach, A.R., and Taylor, R.D., J. Mol. Biol., 1997, vol. 267, pp. 727–748.

    Article  CAS  PubMed  Google Scholar 

  82. Renner, S., Derksen, S., Radestock, S., and Morchen, F., J. Chem. Inf. Model., 2008, vol. 48, pp. 319–332.

    Article  CAS  PubMed  Google Scholar 

  83. Blomberg, D., Fex, T., Xue, Y., Brickmann, K., and Kihlberg, J., Org. Biomol. Chem., 2007, vol. 5, no. (16), pp. 2599–2605.

    Article  CAS  PubMed  Google Scholar 

  84. Pyrkov, T.V., Kosinsky, Y.A., Arseniev, A.S., Priestle, J.P., Jacoby, E., and Efremov, R.G., J. Chem. Inf. Model., 2007, vol. 47, pp. 1171–1181.

    Article  CAS  PubMed  Google Scholar 

  85. Bindewald, E. and Skolnick, J., J. Comput. Chem., 2005, vol. 26, pp. 374–383.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Pyrkov.

Additional information

Original Russian Text © T.V. Pyrkov, I.V. Ozerov, E.D. Balitskaya, R.G. Efremov, 2010, published in Bioorganicheskaya Khimiya, 2010, Vol. 36, No. 4, pp. 482–492.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyrkov, T.V., Ozerov, I.V., Balitskaya, E.D. et al. Molecular docking: The role of noncovalent interactions in the formation of protein-nucleotide and protein-peptide complexes. Russ J Bioorg Chem 36, 446–455 (2010). https://doi.org/10.1134/S1068162010040023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162010040023

Key words

Navigation