Skip to main content
Log in

Neural Network Approach to the Problem of Predicting Interest Rate Anomalies under the Influence of Correlated Noise

  • Published:
Doklady Mathematics Aims and scope Submit manuscript

Abstract

The aim of this study is to analyze bifurcation points in financial models using colored noise as a stochastic component. The research investigates the impact of colored noise on change-points and approach to their detection via neural networks. The paper presents a literature review on the use of colored noise in complex systems. The Vasicek stochastic model of interest rates is the object of the research. The research methodology involves approximating numerical solutions of the model using the Euler–Maruyama method, calibrating model parameters, and adjusting the integration step. Methods for detecting bifurcation points and their application to the data are discussed. The study results include the outcomes of an LSTM model trained to detect change-points for models with different types of noise. Results are provided for comparison with various change-point windows and forecast step sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. M. Lavielle and G. Teyssière, “Detection of multiple changepoints in multivariate time series,” Lith. Math. J. 46 (3), 287–306 (2006). https://doi.org/10.1007/s10986-006-0028-9

    Article  Google Scholar 

  2. M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes: Theory and Application (Prentice Hall, 1993). http://books.google.de/books?id=Vu5SAAAAMAAJ

  3. P. Kokoszka and G. Teyssière, “Change-point detection in GARCH models: Asymptotic and bootstrap tests,” LIDAM Discussion Papers CORE, 2002065 (2003).

  4. M. Lavielle and G. Teyssière, “Adaptive detection of multiple change-points in asset price volatility,” in Long Memory in Economics (Springer, Berlin, 2007), pp. 129–156.

    Google Scholar 

  5. L. I. Yaroslavovich, “Modeling the time structure of interest rates,” Econ. Taxes Right, No. 1, 43–51 (2016). https://ideas.repec.org/a/scn/031101/16506846.html

  6. S. K. Kisoeb Park, “On interest rate option pricing with jump processes,” Int. J. Eng. Appl. Sci. 2 (7), (2015).

  7. M. M. Khrustalev and K. A. Tsarkov, “Terminal invariance of jump diffusions,” Dokl. Math. 102 (1), 353–355 (2020). https://doi.org/10.1134/S1064562420040092

    Article  MathSciNet  Google Scholar 

  8. G. Orlando, R. Mininni, and M. Bufalo, “Forecasting interest rates through Vasicek and CIR models: A partitioning approach” (2019). https://doi.org/10.48550/arXiv.1901.02246

  9. S. Zeytun and A. Gupta, “A comparative study of the Vasicek and the CIR model of the short rate” (2007). https://api.semanticscholar.org/CorpusID:261809873

  10. O. Vasicek, “An equilibrium characterization of the term structure,” J. Financ. Econ. 5 (2), 177–188 (1977). https://doi.org/10.1016/0304-405x(77)90016-2

    Article  Google Scholar 

  11. S. Guz, R. Mannella, and M. Sviridov, “Catastrophes in Brownian motion,” Phys. Lett. A 317 (3–4), 233–241 (2003). https://doi.org/10.1016/j.physleta.2003.08.043

    Article  MathSciNet  Google Scholar 

  12. M. Stoyanov, M. Gunzburger, and J. Burkardt, “Pink noise, 1/fsup/supnoise, and their effect on solutions of differential equations,” Int. J. Uncertainty Quantif. 1 (3), 257–278 (2011). https://doi.org/10.1615/int.j.uncertaintyquantification.2011003089

    Article  MathSciNet  Google Scholar 

  13. B. Kaulakys, J. Ruseckas, V. Gontis, and M. Alaburda, “Nonlinear stochastic models of noise and power-law distributions,” Physica A: Stat. Mech. Appl. 365 (1), 217–221 (2006). https://doi.org/10.1016/j.physa.2006.01.017

    Article  Google Scholar 

  14. T. Björk, Arbitrage Theory in Continuous Time (Oxford Univ. Press, Oxford, 1998). https://doi.org/10.1093/0198775180.001.0001

    Book  Google Scholar 

  15. G. Orlando, R. M. Mininni, and M. Bufalo, “A new approach to CIR short-term rates modelling,” in New Methods in Fixed Income Modeling (Springer International, 2018), pp. 35–43. https://doi.org/10.1007/978-3-319-95285-7_2

    Book  Google Scholar 

  16. M. M. Kłosek-Dygas, B. J. Matkowsky, and Z. Schuss, “Colored noise in dynamical systems,” SIAM J. Appl. Math. 48 (2), 425–441 (1988). https://doi.org/10.1137/0148023

    Article  MathSciNet  Google Scholar 

  17. M. R. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise (Freeman, New York, 1991).

    Google Scholar 

  18. B. Kaulakys, V. Gontis, and M. Alaburda, “Point process model of 1/f noise vs a sum of Lorentzians,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71, 051105 (2005).

  19. Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24 (11), 1418–1423 (2012). https://doi.org/10.1002/adma.201104714

    Article  Google Scholar 

  20. B. M. Bibby, M. Jacobsen, and M. Sørensen, “Estimating functions for discretely sampled diffusion-type models,” in Handbook of Financial Econometrics: Tools and Techniques (Elsevier, Amsterdam, 2010), pp. 203–268. https://doi.org/10.1016/b978-0-444-50897-3.50007-9

    Book  Google Scholar 

  21. G. Orlando, R. M. Mininni, and M. Bufalo, “Interest rates calibration with a CIR model,” J. Risk Finance 20 (4), 370–387 (2019). https://doi.org/10.1108/jrf-05-2019-0080

    Article  Google Scholar 

  22. K. Kladivko, “Maximum likelihood estimation of the Cox–Ingersoll–Ross process: The MATLAB implementation” (2007). https://www.mathworks.com/matlabcentral/fileexchange/37297-maximum-likelihood-estimation-of-the-cox-ingersoll-ross-process-the-matlab-implementation

  23. R. Mannella, “Integration of stochastic differential equations on a computer,” Int. J. Mod. Phys. C 13 (9), 1177–1194 (2002). https://doi.org/10.1142/s0129183102004042

    Article  Google Scholar 

  24. T. Sauer, “Numerical solution of stochastic differential equations in finance,” in Handbook of Computational Finance (Springer, Berlin, 2011), pp. 529–550. https://doi.org/10.1007/978-3-642-17254-0_19

    Book  Google Scholar 

  25. F. Ereshko, “Analysis of explicit numerical methods for solving stochastic differential equations” (2008).

  26. R. Killick, P. Fearnhead, and I. A. Eckley, “Optimal detection of changepoints with a linear computational cost,” J. Am. Stat. Assoc. 107 (500), 1590–1598 (2012). https://doi.org/10.1080/01621459.2012.737745

    Article  MathSciNet  Google Scholar 

  27. C. Faure, J.-M. Bardet, M. Olteanu, and J. Lacaille, “Comparison of three algorithms for parametric change-point detection,” Proceedings of the 2016 European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (2016), pp. 89–94.

  28. J. Chen and A. K. Gupta, Parametric Statistical Change Point Analysis (Birkhäuser, Boston, 2012). https://doi.org/10.1007/978-0-8176-4801-5

    Book  Google Scholar 

  29. F. Picard, S. Robin, M. Lavielle, C. Vaisse, and J.-J. Daudin, “A statistical approach for array CGH data analysis,” BMC Bioinformatics 6 (1), 27 (2005). https://doi.org/10.1186/1471-2105-6-27

    Article  Google Scholar 

  30. J. Huang, J. Chai, and S. Cho, “Deep learning in finance and banking: A literature review and classification,” Front. Bus. Res. China 14, 13 (2020).

    Article  Google Scholar 

  31. J. B. Heaton, N. G. Polson, and J. H. Witte, “Deep learning in finance” (2018). https://doi.org/10.48550/arXiv.1602.06561

  32. J. Jang, J. Yoon, J. Kim, J. Gu, and H. Kim, “DeepOption: A novel option pricing framework based on deep learning with fused distilled data from multiple parametric methods,” Inf. Fusion 70, 43–59 (2021).

    Article  Google Scholar 

  33. O. Pironneau, “Calibration of Heston model with Keras” (2019). https://hal.sorbonne-universite.fr/hal-02273889

  34. M. Ben Alaya, A. Kebaier, and D. Sarr, “Deep calibration of interest rates model” (2021).

  35. K. J. Oh and I. Han, “Using change-point detection to support artificial neural networks for interest rates forecasting,” Expert Syst. Appl. 19, 105–115 (2000).

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. A. Zotov or P. P. Lukianchenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zotov, G.A., Lukianchenko, P.P. Neural Network Approach to the Problem of Predicting Interest Rate Anomalies under the Influence of Correlated Noise. Dokl. Math. 108 (Suppl 2), S293–S299 (2023). https://doi.org/10.1134/S1064562423701521

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064562423701521

Keywords:

Navigation