Skip to main content
Log in

Odd-Distance Sets and Right-Equidistant Sequences in the Maximum and Manhattan Metrics

  • MATHEMATICS
  • Published:
Doklady Mathematics Aims and scope Submit manuscript

Abstract

We solve two related extremal-geometric questions in the n-dimensional space \(\mathbb{R}_{\infty }^{n}\) equipped with the maximum metric. First, we prove that the maximum size of a right-equidistant sequence of points in \(\mathbb{R}_{\infty }^{n}\) equals \({{2}^{{n + 1}}} - 1\). A sequence is right-equidistant if each of the points is at the same distance from all the succeeding points. Second, we prove that the maximum number of points in \(\mathbb{R}_{\infty }^{n}\) with pairwise odd distances equals 2n. We also obtain partial results for both questions in the n-dimensional space \(\mathbb{R}_{1}^{n}\) with the Manhattan distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This example is not unique. Moreover, there exist continually many pairwise nonisometric sequences of maximum size.

REFERENCES

  1. N. Alon and P. Pudlák, “Equilateral sets in \(l_{p}^{n}\),” Geom. Funct. Anal. 13 (3), 467–482 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  2. H.-J. Bandelt, V. Chepoi, and M. Laurent, “Embedding into rectilinear spaces,” Discrete Comput. Geom. 19 (4), 595–604 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Blokhuis and H. A. Wilbrink, “Alternative proof of Sine’s theorem on the size of a regular polygon in \(\mathbb{R}_{{}}^{n}\) with the \(l_{\infty }^{{}}\)-metric,” Discrete Comput. Geom. 7 (4), 433–434 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  4. R. P. Dilworth, “A decomposition theorem for partially ordered sets,” Ann. Math. 51 (2), 161–166 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Erdős and C. A. Rogers, “Covering space with convex bodies,” Acta Arith. 7 (3), 281–285 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Frankl, A. Kupavskii, and A. Sagdeev, “Max-norm Ramsey theory” (2021). arXiv preprint 2111.08949.

  7. H. Ardal, J. Maňuch, M. Rosenfeld, S. Shelah, and L. Stacho, “The odd-distance plane graph,” Discrete Comput. Geom. 42, 132–141 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  8. R. L. Graham, B. L. Rothschild, and E. G. Straus, “Are there n + 2 points in E n with odd integral distances?” Am. Math. Mon. 81 (1), 21–25 (1974).

    MATH  Google Scholar 

  9. R. K. Guy, “Unsolved problems: An olla-podrida of open problems, often oddly posed,” Am. Math. Mon. 90 (3), 196–200 (1983).

    Article  MathSciNet  Google Scholar 

  10. J. Koolen, M. Laurent, and A. Schrijver, “Equilateral dimension of the rectilinear space,” Des. Codes Cryptogr. 21 (1), 149–164 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Naszódi, J. Pach, and K. Swanepoel, “Arrangements of homothets of a convex body,” Mathematika 63 (2), 696–710 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  12. C. M. Petty, “Equilateral sets in Minkowski spaces,” Proc. Am. Math. Soc. 29 (2), 369–374 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Polyanskii, “Pairwise intersecting homothets of a convex body,” Discrete Math. 340 (8), 1950–1956 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  14. C. Smyth, “Equilateral sets in \(l_{p}^{d}\),” in Thirty Essays on Geometric Graph Theory, Ed. by J. Pach (Springer, New York, 2013), pp. 483–488.

    Google Scholar 

  15. K. J. Swanepoel, “Cardinalities of k-distance sets in Minkowski spaces,” Discrete Math. 197, 759–767 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  16. K. J. Swanepoel, “A problem of Kusner on equilateral sets,” Arch. Math. 83 (2), 164–170 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  17. K. J. Swanepoel and R. Villa, “Maximal equilateral sets,” Discrete Comput. Geom. 50 (2), 354–373 (2013).

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Ilya Bogdanov for the simplification of the original proof of Theorem 2.

Funding

This work was supported by the Russian Science Foundation, grant no. 22-21-00368.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Golovanov, A. B. Kupavskii or A. A. Sagdeev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovanov, A.I., Kupavskii, A.B. & Sagdeev, A.A. Odd-Distance Sets and Right-Equidistant Sequences in the Maximum and Manhattan Metrics. Dokl. Math. 106, 340–342 (2022). https://doi.org/10.1134/S106456242205012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106456242205012X

Keywords:

Navigation