Skip to main content
Log in

Control of a Mobile Robotic System for the Maintenance of Vertical Surfaces

  • ROBOTICS
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

A robotic complex consisting of a transport-handling platform and a climbing robot installed on it is considered. The platform is designed to move the robot on a horizontal surface and place it on a vertical surface. The practical implementation of the platform control algorithm is described, which makes it possible to automate the process of placing the robot on a vertical surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.

Similar content being viewed by others

Notes

  1. https://youtu.be/By9M277g9zw.

REFERENCES

  1. A. M. Nunuparov and V. G. Chashchukhin, “Control system of an aerodynamically adhesive wall-climbing robot,” J. Comput. Syst. Sci. Int. 59 (2), 301–310 (2020).

    Article  Google Scholar 

  2. V. G. Chashchukhin, “Orientation system of the aerodynamically adhesive wall climbing robot,” Extreme Rob. 1 (1), 145–148 (2019).

    Google Scholar 

  3. V. G. Chashchukhin, “Study of motion parameters of a robot with a sliding seal,” Vestn. Nizhegorod. Univ. im. N. I. Lobachevskogo, No. 4 (2), 347–349 (2011).

  4. M. Alhaddad, “Modeling and controlling the motion of a manipulator with a closed kinematic chain and a linear actuator,” J. Comput. Syst. Sci. Int. 60 (3), 502–510 (2021).

    Article  Google Scholar 

  5. M. Alhaddad, “Adaptive motion control of a mobile wheeled robot taking into account the nonideality of the drives,” J. Comput. Syst. Sci. Int. 61 (5), 868–882 (2022).

    Article  MathSciNet  Google Scholar 

  6. H. Wang, T. Fukao, and N. Adachi, “An adaptive tracking control approach for nonholonomic mobile robot”, IFAC Proc. 32 (2), 8184–8189 (1999).

  7. T. Fukao, H. Nakagawa, and N. Adachi, “Adaptive tracking control of a nonholonomic mobile robot,” IEEE Trans. Rob. Autom. 16 (5), 609–615 (2000).

    Article  Google Scholar 

  8. F. Pourboghrat and M. P. Karlsson, “Adaptive control of dynamic mobile robots with nonholonomic constraints,” Comput. Electr. Eng. 28 (4), 241–253 (2002).

    Article  Google Scholar 

  9. Y. Koubaa, M. Boukattaya, and T. Dammak, “An adaptive control for uncertain mobile robot considering skidding and slipping effects,” in 5th Int. Conf. on Systems and Control (ICSC) (Marrakesh, 2016), pp. 13–19.

  10. J. Wu, G. Xu, and Z. Yin, “Robust adaptive control for a nonholonomic mobile robot with unknown parameters,” J. Control Theory Appl. 7, 212–215 (2009).

    Article  MathSciNet  Google Scholar 

  11. J. Ye, “Adaptive control of nonlinear PID-based analog neural networks for a nonholonomic mobile robot,” Neurocomputing 71, 1561–1565 (2008).

    Article  Google Scholar 

  12. E. Canigur and M. Ozkan, “Model reference adaptive control of a nonholonomic wheeled mobile robot for trajectory tracking,” in International Symposium on Innovations in Intelligent Systems and Applications (Trabzon, 2012), pp. 1–5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Alhaddad or V. G. Chashchukhin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhaddad, M., Chashchukhin, V.G. Control of a Mobile Robotic System for the Maintenance of Vertical Surfaces. J. Comput. Syst. Sci. Int. 62, 377–397 (2023). https://doi.org/10.1134/S106423072302003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106423072302003X

Navigation