Skip to main content
Log in

Artificial Muscles (Review Article)

  • ROBOTICS
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

The current state of the art in systems and actuators for controlling soft exoskeletons is reviewed. The most important prototypes of flexible actuators are studied. Applications of these drives in medicine and industry are considered. The classification and recommendations for the construction of such devices based on the analysis of the effectiveness of the existing models by third-party research groups are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.

Similar content being viewed by others

REFERENCES

  1. M. P. de Looze, T. Bosch, F. Krause, K. S. Stadler, and L. W. O’Sullivan, “Exoskeletons for industrial application and their potential effects on physical work load,” Ergonomics 59, 671–681 (2016).

    Article  Google Scholar 

  2. M. Bortole, A. Venkatakrishnan, F. Zhu, et al., “The H2 robotic exoskeleton for gait rehabilitation after stroke: Early findings from a clinical study,” J. NeuroEng. Rehabil. 12 (54) (2015). https://doi.org/10.1186/s12984-015-0048-y

  3. M. Lidka, “Comparison of DC motors and dielectric elastomer actuators for wearable wrist exoskeletons,” Electronic Thesis and Dissertation Reposit. (2017). https://ir.lib.uwo.ca/etd/5032

  4. R. A. R. C. Gopura and K. Kiguchi, “Mechanical designs of active upper-limb exoskeleton robots state-of-the-art and design difficulties,” in Proceedings of the IEEE International Conference on Rehabilitation Robotics, Kyoto, 2009, pp. 178–187.

  5. A. J. Veale and S. Q. Xie, “Towards compliant and wearable robotic orthoses: A review of current and emerging actuator technologies,” Med. Eng. Phys. 38, 317–325 (2016).

    Article  Google Scholar 

  6. P. Heo, G. M. Gu, Sj. Lee, K. Rhee, and J. Kim, “Current hand exoskeleton technologies for rehabilitation and assistive engineering,” Int. J. Precision Eng. Manuf. 13, 807–824 (2012).

    Article  Google Scholar 

  7. C. Lee, M. Kim, Y. J. Kim, et al., “Soft robot review,” Int. J. Control Autom. Syst. 15, 3–15 (2017).

    Article  Google Scholar 

  8. H. S. Lo and S. Q. Xie, “Exoskeleton robots for upper-limb rehabilitation: State of the art and future prospects,” Med. Eng. Phys. 34, 261–268 (2012).

    Article  Google Scholar 

  9. R. A. R. C. Gopura, K. Kiguchi, and D. S. V. Bandara, “A brief review on upper extremity robotic exoskeleton systems,” in Proceedings of the 6th International Conference on Industrial and Information Systems, Kandy, 2011, pp. 346–351.

  10. A. Ebrahimi, “Stuttgart exo-jacket: An exoskeleton for industrial upper body applications,” in Proceedings of the 10th International Conference on Human System Interactions (HSI), Ulsan, 2017, pp. 258–263.

  11. D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” Nature (London, U.K.) 521, 467–475 (2015).

    Article  Google Scholar 

  12. R. Motmans, T. Debaets, and S. Chrispeels, “Effect of a passive exoskeleton on muscle activity and posture during order picking,” Adv. Intell. Syst. Comput. 820, 338–346 (2019).

    Google Scholar 

  13. M. L. Hall and M. A. Lobo, “Design and development of the first exoskeletal garment to enhance arm mobility for children with movement impairments,” Assist. Technol. 30, 251–258 (2018).

    Article  Google Scholar 

  14. Center for Aerospace Medicine and Technology. Medical Suit 'Regent'. http://amc-si.com/tovari-i-uslugi/lechebniy-kostium-regent.

  15. F. Daerden and D. Lefeber, “Pneumatic artificial muscles: Actuators for robotics and automation,” Eur. J. Mech. Environ. Eng. 47, 11–21 (2002).

    Google Scholar 

  16. D. Sangian, “New types of McKibben artificial muscles,” PhD Dissertation (Univ. of Wollongong, New South Wales, Australia, 2016).

  17. M. A. Chumichev, D. A. Gribkov, V. E. Pavlovsky, and I. A. Orlov, “A model of the pneumatic artificial muscle,” Extreme Robotics 1, 453–461 (2019).

    Google Scholar 

  18. FESTO. Pneumomuscle MAS. www.festo.com/cat/ru_ru/data/doc_ru/PDF/RU/MAS_RU.PDF.

  19. G. Belforte, G. Eula, A. Ivanov, T. Raparelli, and S. Sirolli, “Presentation of textile pneumatic muscle prototypes applied in an upper limb active suit experimental model,” J. Textile Inst. 109, 757–766 (2017).

    Article  Google Scholar 

  20. S. Gobee, V. Durairajah, and G. Mugilan, “Design and development of upper limb soft exoskeleton for rehabilitation,” in Proceedings of the 2nd International Conference for Innovation in Biomedical Engineering and Life Sciences ICIBEL 2017, IFMBE Proc. (Springer, Singapore, 2018), pp. 111–116.

  21. S. Lee, J. Kim, L. Baker, et al., “Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking,” J. Neuroeng. Rehabil. 15, 66 (2018). https://doi.org/10.1186/s12984-018-0410-y

    Article  Google Scholar 

  22. A. T. Asbeck, S. M. M. de Rossi, I. Galiana, Y. Ding, and C. J. Walsh, “Stronger, smarter, softer: Next-generation wearable robots,” IEEE Robot. Autom. Mag. 21, 22–23 (2014).

    Article  Google Scholar 

  23. B. Verrelst, R. van Ham, B. Vanderborght, D. Lefeber, F. Daerden, and M. van Damme, “Second generation pleated pneumatic artificial muscle and its robotic applications,” Adv. Robotics 20, 783–805 (2006).

    Article  Google Scholar 

  24. D. Villegas, M. van Damme, B. Vanderborght, P. Beyl, and D. Lefeber, “Third-generation pleated pneumatic artificial muscles for robotic applications: Development and comparison with McKibben muscle,” Adv. Robotics 26, 1205–1227 (2012).

    Article  Google Scholar 

  25. H. Kim, H. Park, J. Kim, K. Cho, and Y. Park, “Design of anisotropic pneumatic artificial muscles and their applications to soft wearable devices for text neck symptoms,” in Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, 2017, pp. 4135–4138.

  26. P. Polygerinos, S. Lyne, Z. Wang, et al., “Towards a soft pneumatic glove for hand rehabilitation,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, 2013, pp. 1512–1517.

  27. Y. Park, J. Santos, K. G. Galloway, E. C. Goldfield, and R. J. Wood, “A soft wearable robotic device for active knee motions using flat pneumatic artificial muscles,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 2014, pp. 4805–4810.

  28. P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, and C. J. Walsh, “Soft robotic glove for combined assistance and at-home rehabilitation,” Robot. Auton. Syst. 73, 135–143 (2015).

    Article  Google Scholar 

  29. V. V. Makhsidov, A. M. Shienok, and D. V. Ioshin, “Simultaneous measurement of the strain and temperature using fibre Bragg grating-based sensors (a generalizing article),” Zavod. Lab. Diagn. Mater. 82 (11), 54–60 (2016).

    Google Scholar 

  30. W. Huang, “Shape memory alloys and their application to actuators for deployable structures,” PhD Dissertation (Eng. Departm., Cambridge Univ., Cambridge, 1998).

  31. L. Stirling, C. H. Yu, J. Miller, et al., “Applicability of shape memory alloy wire for an active, soft orthotic,” J. Mater. Eng. Perform. 20, 658–662 (2011).

    Article  Google Scholar 

  32. T. P. Chenal, J. C. Case, J. Paik, and R. K. Kramer, “Variable stiffness fabrics with embedded shape memory materials for wearable applications,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, 2014, pp. 2827–2831.

  33. M. Yuen, A. Cherian, J. C. Case, J. Seipel, and R. K. Kramer, “Conformable actuation and sensing with robotic fabric,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, 2014, pp. 580–586.

  34. D. Chiaradia, M. Xiloyannis, C. W. Antuvan, A. Frisoli, and L. Masia, “Design and embedded control of a soft elbow exosuit,” in Proceedings of the IEEE International Conference on Soft Robotics (RoboSoft), Livorno, 2018, pp. 565–571.

  35. L. Hines, K. Petersen, G. Z. Lum, and M. Sitti, “Soft actuators for small-scale robotics,” Adv. Mater. 29, 1603483 (2017). https://doi.org/10.1002/adma.201603483

    Article  Google Scholar 

  36. D. Marks, Electric Motors for Machines and Mechanisms. http://fab.cba.mit.edu/classes/S62.12/docs/motors.pdf.

  37. E. Guizzo and H. Goldstein, “The rise of the body bots robotic exoskeletons,” IEEE Spectrum 42 (10), 50–56 (2005).

    Article  Google Scholar 

  38. J. Stein, K. Narendran, J. McBean, K. Krebs, and R. Hughes, “Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke,” Am. J. Phys. Med. Rehabil. 86, 255–261 (2007).

    Article  Google Scholar 

  39. S. J. Kim, Y. Kim, H. Lee, P. Ghasemlou, and J. Kim, “Development of an MR-compatible hand exoskeleton that is capable of providing interactive robotic rehabilitation during FMRI imaging,” Med. Biol. Eng. Comput. 56, 261–272 (2018).

    Article  Google Scholar 

  40. I. Yamamoto, N. Inagawa, K. Hachisuka, F. Oda, and Y. Nakanishi, “Development of compact rehabilitation robot for a wrist using biological signal,” in Proceedings of the ICME International Conference on Complex Medical Engineering (CME), Kobe, 2012, pp. 557–560.

  41. V. V. Lavrinenko, I. A. Kartashev, and V. S. Vishnevskii, Piezoelectric Motors (Energiya, Moscow, 1980) [in Russian].

    Google Scholar 

  42. A. Zoss, H. Kazerooni, and A. Chu, “On the mechanical design of the Berkeley lower extremity exoskeleton (BLEEX),” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, 2005, pp. 3465–3472.

  43. INNOPHYS. Muscle Suit. https://innophys.jp/product/standard/.

  44. INNOPHYS. Muscle suit Edge. https://innophys.jp/product/edge/.

  45. INNOPHYS. Muscle suit Power. https://innophys.jp/product/power/.

  46. B. Vanderborght, N. G. Tsagarakis, R. van Ham, et al., “MACCEPA 2.0: Compliant actuator used for energy efficient hopping robot Chobino1D,” Autonom. Robots 31, 55–65 (2011).

    Article  Google Scholar 

  47. G. Carpino, D. Accoto, F. Sergi, N. Tagliamonte, and E. Guglielmelli, “A novel compact torsional spring for series elastic actuators for assistive wearable robots,” J. Mech. Design 134, 1–10 (2012).

    Article  Google Scholar 

  48. G. Mathijssen, B. Brackx, M. van Damme, D. Lefeber, and B. Vanderborght, “Series-parallel elastic actuation (SPEA) with intermittent mechanism for reduced motor torque and increased efficiency,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, 2013, pp. 5841–5846.

  49. B. Vanderborght, A. Albu-Schaeffer, A. Bicchi, et al., “Variable impedance actuators: A review,” Robot. Auton. Syst. 61, 1601–1614 (2013).

    Article  Google Scholar 

  50. S. Collins, M. Wiggin, and G. Sawicki, “Reducing the energy cost of human walking using an unpowered exoskeleton,” Nature (London, U.K.) 522, 212–215 (2015).

    Article  Google Scholar 

  51. N. R. Butler, S. A. Goodwin, and J. C. Perry, “Design parameters and torque profile modification of a spring-assisted hand-opening exoskeleton module,” in Proceedings of the 15th IEEE International Conference on Rehabilitation Robotics (ICORR), London, 2017, pp. 591–596.

  52. Y. Hasegawa and M. Muramatsu, “Wearable lower-limb assistive device for physical load reduction of caregiver on transferring support,” in Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Wollongong, 2013, pp. 1027–1032.

  53. L. Hiesmair, “Compliant exoskeleton,” Bachelor Thesis (Clarkson Univ., Autom. Eng., 2016).

  54. A. M. Dollar and H. Herr, “Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art,” IEEE Trans. Robotics 24, 144–158 (2008).

    Article  Google Scholar 

  55. S. Kawamura, T. Yamamoto, D. Ishida, et al., “Development of passive elements with variable mechanical impedance for wearable robots,” in Proceedings of the IEEE International Conference on Robotics and Automation, Cat. No. 02CH37292 (Washington, DC, 2002), Vol. 1, pp. 248–253.

  56. Y. Park, B. Chen, C. Majidi, R. J. Wood, R. Nagpal, and E. Goldfield, “Active modular elastomer sleeve for soft wearable assistance robots,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Algarve, 2012, pp. 1595–1602.

  57. Y. Park, S. C. Ryu, R. J. Black, K. K. Chau, B. Moslehi, and M. R. Cutkosky, “Exoskeletal force-sensing end-effectors with embedded optical fiber-Bragg-grating sensors,” IEEE Trans. Robotics 25, 1319–1331 (2009).

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 18-71-10112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Orlov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliseichik, A.P., Gribkov, D.A., Efimov, A.R. et al. Artificial Muscles (Review Article). J. Comput. Syst. Sci. Int. 61, 270–293 (2022). https://doi.org/10.1134/S1064230722010026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230722010026

Navigation