Skip to main content
Log in

Binding Cryptographic Keys into Biometric Data: Optimization

  • DATA PROCESSING AND IDENTIFICATION
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

Cryptography and biometry are important components of contemporary access control systems. Cryptographic systems themselves are highly reliable but they require the exact reproduction of access keys; this cannot be done by humans, while the corresponding devices might be lost or stolen. Biometric data are always with the person; however, they vary: it is impossible to obtain the same feature values. In this paper, a way is proposed to link the cryptographic key and the biometric features of the iris. This yields a two-component key such that no original component can be extracted until the biometric features close to the original ones, i.e., the data of the same person, are presented. The connecting method (coder) and the extracting method (decoder) consist of several separate steps executed successively. To select the parameters, we solve the following discrete optimization problem: under the given threshold of the false accept rate, we minimize the value of the false reject rate. The restrictions of this optimization problem are the minimal size of the coded key and the maximal size of the final key. Numerical experiments are conducted on open-access databases (DBs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. P. Alferov, A. Yu. Zubov, A. S. Kuz’min, and A. V. Cheremushkin, Principles of Cryptography (Gelios ARV, Moscow, 2005) [in Russian].

    Google Scholar 

  2. A. L. Chmora, “Key masking using biometry,” Probl. Peredachi Inform. 47 (2), 28–143 (2011).

    MathSciNet  MATH  Google Scholar 

  3. J. G. Daugman, “Information theory and the IrisCode,” IEEE Trans. Inform. Forensics Secur. 11, 400–409 (2016).

    Article  Google Scholar 

  4. S. Gong, V. N. Boddeti, and A. K. Jain, “On the capacity of face representation,” arXiv: 1709.10433 (2017).

  5. M. P. Yankov, M. A. Olsen, M. B. Stegmann, S. S. Christensen, and S. Forchhammer, “Fingerprint entropy and identification capacity estimation based on pixel-level generative modelling,” IEEE Trans. Inform. Forensics Secur. 15, 56–65 (2020).

    Article  Google Scholar 

  6. A. I. Ivanov, P. S. Lozhnikov, and A. E. Sulavko, “Evaluation of singature verification reliability based on artificial neural networks, bayesian multivariate functional and quadratic forms,” Komp’yut. Opt. 41, 765–774 (2017).

    Article  Google Scholar 

  7. A. Juels and M. Sudan, “A fuzzy vault scheme,” Designs, Codes Cryptogr. 38, 237–257 (2006).

    Article  MathSciNet  Google Scholar 

  8. J. Daugman, “How iris recognition works,” in Proceedings of the International Conference on Image Processing, Lake Buena Vista, Orlando, USA,2012, Vol. 1, pp. 33–36.

  9. B. H. Shekar, R. K. Bharathi, J. Kittler, Y. V. Vizilter, and L. Mestestskiy, “Grid structured morphological pattern spectrum for off-line signature verification,” in Proceedings of the International Conference on Biometrics, Phuket, Thailand,2015, Vol. 8, pp. 430–435.

  10. C. Rathgeb and A. Uhl, “A survey on biometric cryptosystems and cancelable biometrics,” EURASIP J. Inform. Secur. 3, 1–25 (2011).

    Google Scholar 

  11. A. V. Maiorov, “Neural network hash function,” Neirokomp’yut.: Razrab. Primen., No. 6, 45–48 (2009).

  12. A. I. Ivanov, S. A. Somkin, D. Yu. Andreev, and E. A. Malygina, “Diversity metrics to watch actual biometric data distribution statistics 'fuzzy extractors' in their protection of a range,” Vestn. UrFO, Bezopasn. Inform. Sfere 2 (12), 16–23 (2014).

    Google Scholar 

  13. GOST (State Standard) R No. 52633.5-2011, Data protection. Information security technique. Automatic training of neural network converters biometry access code (2012).

  14. Y. Sutcu, H. T. Sencar, and N. Memon, “A secure biometric authentication scheme based on robust hashing,” in Proceedings of the 7th Workshop on Multimedia and Security, New York,2005, pp. 111–116.

  15. C. Rathgeb and A. Uhl, “Privacy preserving key generation for iris biometrics,” in Communications and Multimedia Security, Ed. by B. de Decker and I. Schaumueller-Bichl (Springer, Berlin, Heidelberg, 2010), pp. 191–200.

    Google Scholar 

  16. CASIA Iris Image Database, Institute of Automation, Chinese Academy of Sciences, 2010. http://biometrics.idealtest.org/findTotalDbByMode.do?mode=Iris.

  17. G. Davida, Y. Frankel, and B. Matt, “On the relation of error correction and cryptography to an offline biometric based identification scheme,” in Proceedings of the Workshop on Coding and Cryptography, France, Paris,1999, pp. 129–138.

  18. Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate strong keys from biometrics and other noisy data,” SIAM J. Comput. 38, 97–139 (2008).

    Article  MathSciNet  Google Scholar 

  19. S. Yang and I. Verbauwhede, “Secure iris verification,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Honolulu, USA,2007, Vol. 2, pp. 133–136.

  20. J.-P. Linnartz and P. Tuyls, “New shielding functions to enhance privacy and prevent misuse of biometric templates,” in Proceedings of the 4th International Conference on Audio- and Video-Based Biometric Person Authentication, Guildford, UK,2003, pp. 393–402.

  21. A. Shamir, “How to share a secret,” Commun. ACM 22, 612–613 (1979).

    Article  MathSciNet  Google Scholar 

  22. Y. J. Lee, K. Bae, S. J. Lee, K. R. Park, and J. Kim, “Biometric key binding: Fuzzy vault based on iris images,” in Proceedings of the 2nd International Conference on Biometrics, Seoul, Korea,2007, pp. 800–808.

  23. X. Wu, N. Qi, K. Wang, and D. Zhang, “An iris cryptosystem for information security,” in Proceedings of the International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Harbin, China,2008, pp. 1533–1536.

  24. A. Juels and M. Wattenberg, “A fauzzy commitment scheme,” in Proceedings of the 6th ACM Conference on Computer and Communications Security, Singapore,1999, pp. 28–36.

  25. F. Hao, R. Anderson, and J. Daugman, “Combining crypto with biometrics effectively,” IEEE Trans. Comput. 55, 1081–1088 (2006).

    Article  Google Scholar 

  26. R. H. Morelos-Zaragosa, The Art of Error Correcting Coding (Wiley, New York, 2006).

    Book  Google Scholar 

  27. A. Yu. Rubis, M. A. Lebedev, Yu. V. Vizil’ter, O. V. Vygolov, and S. Yu. Zheltov, “Comparative image filtering using monotonic morphological operators,” Komp’yut. Opt. 42, 306–311 (2018).

    Article  Google Scholar 

  28. M. A. Lebedev, A. Yu. Rubis, Yu. V. Vizil’ter, O. V. Vygolov, and S. Yu. Zheltov, “Detecting image differences based on reference EMD-filters,” Mat. Metody Raspozn. Obrazov. 18, 116–117 (2017).

    Google Scholar 

  29. I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” J. SIAM 8, 300–304 (1960).

    MathSciNet  MATH  Google Scholar 

  30. S. Kanade, D. Camara, E. Krichen, D. Petrovska-Delacretaz, and B. Dorizzi, “Three factor scheme for biometric-based cryptographic key regeneration using iris,” in Proceedings of the Biometrics Symposium, Tampa, FL, USA,2008, pp. 59–64.

  31. A. I. Ivanov, “The problem of using fuzzy extractors in statistical biology and cryptography,” Perv. Milya, No. 1, 40 (2015).

    Google Scholar 

  32. K. A. Gankin, A. N. Gneushev, and I. A. Matveev, “Iris image segmentation based on approximate methods with subsequent refinements,” J. Comput. Syst. Sci. Int. 53, 224 (2014).

    Article  Google Scholar 

  33. V. Novik, I. Matveev, and I. Litvinchev, “Enhancing iris template matching with the optimal path method,” Wireless Networks, 1–8 (2018).

  34. D. L. Woodard and K. Ricanek, “Iris databases,” in Encyclopedia of Biometrics, Ed. by S. Z. Li and A. Jain (Springer, Boston, MA, 2009).

    Google Scholar 

  35. P. Phillips, W. Scruggs, A. O’Toole, et al., “Frvt 2006 and Ice 2006 large-scale experimental results,” IEEE PAMI 5, 831–846 (2010).

    Article  Google Scholar 

  36. H. Proenca and L. Alexandre, “UBIRIS: A noisy iris image database,” in Proceedings of the 13th International Conference on Image Analysis and Processing, Cagliari, Italy,2005, pp. 970–977.

  37. www.sovereigncctv.com/panasonic-bm-et300-iris-reader.html. Accessed April 13, 2020.

  38. www.sourcesecurity.com/lg-iris-irisaccess-3000-technical-details.html. Accessed April 13, 2020.

  39. www.iritech.com/products/hardware/. Accessed April 13, 2020.

  40. I. S. Reed, “A class of multiple-error-correcting codes and the decoding scheme,” Trans. IRE Profess. Group Inform. Theory 4, 38–49 (1954).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This study was partially supported by the Russian Foundation for Basic Research (grant no. 19-07-01231).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. T. Zainulina or I. A. Matveev.

Additional information

Translated by A. Muravnik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zainulina, E.T., Matveev, I.A. Binding Cryptographic Keys into Biometric Data: Optimization. J. Comput. Syst. Sci. Int. 59, 699–711 (2020). https://doi.org/10.1134/S1064230720050135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230720050135

Navigation