Skip to main content
Log in

Middle Devonian Acid Sulfate Paleosol: The First Finding in the Central Devonian Field (Voronezh High, Southern Russia)

  • PALEOPEDOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The Middle Devonian (Eifelian) paleosol (PS) recently discovered in the area of Voronezh Anteclise has been studied in detail. The PS is developed from acid volcanic rock, rhyolitic tuff. The thickness of laterally continuous PS varies from 20 to 150 cm depending on the relief of the Proterozoic basement beneath it. The tuff contains the inclusions of allochthonous coal particles most part of which is partially or completely substituted by pyrite. The main part of coal particles belongs to the remnants of nematophytes (Nematophyta and Prototaxites). The absence of rhizoliths and the microstructure of plant debris suggest that the PS developed under primitive rootless vegetation. The set of obtained analytical characteristics demonstrates that this PS is an analogue of the modern acid sulfate soils. The PS formation was the result of predominantly chemical weathering initiated by pyrite oxidation. The following pedological characteristics were noted: kaolinite formation and redistribution; tonguing soil bottom; iron mobility; formation of iron- and gypsum-containing nodules; and in situ formation of gypsum, iron oxides, and iron sulfates. Characteristic of the PS top is an increase of Al2O3 and Fe2O3; the values of Al/Ti, Ba/Sr, and K/Rb ratios; and the lateritization index. The pedogenesis had the local (focal) character without formation of distinct soil horizons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. T. V. Alekseeva, “Soils in Devonian and Carboniferous. Current state of knowledge in Russia: a review,” Eurasian Soil Sci. 53 (10), 1343–1353 (2020). https://doi.org/10.1134/S1064229320100026

    Article  ADS  Google Scholar 

  2. T. V. Alekseeva, Doctoral Dissertation in Geology and Mineralogy (Moscow, 2020).

  3. M. M. Astaf’eva, A. Yu. Rozanov, and R. Khuver, “Framboids: their structure and origin,” Paleontol. J., No. 5, 3–9 (2005).

  4. A. V. Goman’kov, “Orestovia-like plants from the Devonian of Russia: morphology and taxonomic position,” Lethaea Rossica 18, 16–31 (2019).

    Google Scholar 

  5. S. V. Goryachkin, “Geography of extreme soils and soil-like systems,” Herald Russ. Acad. Sci. 92 (6), 335–341 (2022).

    Article  Google Scholar 

  6. T. A. Ishchenko and A. A. Ishchenko, Middle Devonian Flora of the Voronezh Anteclise (Naukova Dumka, Kyiv, 1981) [in Russian].

    Google Scholar 

  7. P. V. Krasil’nikov, V. M. Safonova, and S. N. Sedov, “Sulfate acid weathering in soils of North Karelia,” Pochvovedenie, No. 6, 740–746 (1995).

    Google Scholar 

  8. A. Yu. Rozanov and M. M. Astafieva, “Prasinophyceae (green algae) from the Lower Proterozoic of the Kola Peninsula,” Paleontol. J. 42 (4), 425–430 (2008).

    Article  Google Scholar 

  9. A. D. Savko, “Geology of the Voronezh Anteclise,” in Proceedings of the Research Institute of Geology of Voronezh State University (2002), Vol. 12.

  10. V. M. Sinitsin, Ancient climates of Eurasia, Part 3: Second Half of the Paleozoic (Devonian, Carboniferous, Permian) (Izd. Leningrad. Univ., Leningrad, 1970) [in Russian].

  11. V. O. Targulian, N. S. Mergelov, and S. V. Goryachkin, “Soil-like bodies on Mars,” Eurasian Soil Sci. 50 (2), 185–197 (2017). https://doi.org/10.1134/S1064229317020120

    Article  ADS  CAS  Google Scholar 

  12. T. V. Alekseeva, A. O. Alekseev, and G. V. Mitenko, “A paleosol on a Pre-Cambrian ferruginous quartzite weathering crust (Stary Oskol, Belgorod Region, Russia),” Paleontol. J. 55, (12), 1476–1490 (2021).

    Article  Google Scholar 

  13. T. Alekseeva, P. Kabanov, A. Alekseev, P. Kalinin, and V. Alekseeva, “Characteristics of early Earth`s critical zone based on Middle-Late Devonian palaeosols properties (Voronez High, Russia),” Clays Clay Miner. 64, 677–694 (2016).

    Article  ADS  CAS  Google Scholar 

  14. T. Alekseeva, P. Kalinin, V. Malishev, and A. O. Alekseev, “Sulfide oxidation as a trigger for rhyolite weathering and paleosol formation in Devonian (Voronezh High, South Russia),” Catena 220A, 106712 (2023).

    Article  Google Scholar 

  15. W. Andriesse and M. E. F. van Mensvoort, “Acid sulfate soils, distribution and extent,” in Encyclopedia of Soil Science, Ed. by R. Lal (Marcel Dekker, 2002).

    Google Scholar 

  16. M. G. Babechuk and M. Widdowson, “Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India,” Chem. Geol. 363, 56–75 (2014).

    Article  ADS  CAS  Google Scholar 

  17. J. Bek, M. Uhlirova, J. Psenicka, and J. Sakala, “Preliminary results on reproductive organs and in situ spores of an early land plant Tichavekia grandis Pšenička et al. from Přídolí (upper Silurian) of the Prague Basin, Czech Republic,” Palaeoworld, (2023). https://doi.org/10.1016/j.palwor.2023.01.014

  18. The Soils of Antarctica, Ed. by J. G. Bockheim (Springer International Publishing, Switzerland, 2015).

    Google Scholar 

  19. A. V. Broushkin and N. V. Gordenko, “Istchenkophyton filiciforme gen. et sp. nov., a new small vascular plant with thick cuticle from the Devonian of Voronezh Region (European Russia),” Paleontol. J. 43 (10), 1202–1216 (2009).

    Article  Google Scholar 

  20. B. Butler and D. Rickard, “Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulfide,” Geochim. Cosmochim. Acta 64, 2665–2672 (2000).

    Article  ADS  CAS  Google Scholar 

  21. J. Carter, Ch. Viviano-Beck, D. Loizeau, J. Bishop, and L. Le Deit, “Orbital detection and implications of akaganeite on Mars,” Icarus 253, 296–310 (2015).

    Article  ADS  CAS  Google Scholar 

  22. C. De Kimpe and N. Miles, “Formation of swelling clay minerals by sulfide oxidation in some metamorphic rocks and related soils of Ontario, Canada,” Can. J. Soil Sci. 72, 263–270 (1992).

    Article  CAS  Google Scholar 

  23. D. Edwards and L. Axe, “Evidence for a fungal affinity for Nematasketum, a close ally of Prototaxites,” Bot. J. Linn. Soc. 168, 1–18 (2012).

    Article  Google Scholar 

  24. R. W. Fitzpatrick, J. le Roux, and U. Schwertmann, “Amorphous and crystalline titanium and iron-titanium oxides in synthetic preparations, at near ambient conditions, and in soil clays,” Clays Clay Miner. 26 (3), 189–201 (1978).

    Article  ADS  CAS  Google Scholar 

  25. R. Honegger, “Fossil lichens from the Lower Devonian and their bacterial and fungal epi- and endobionts,” in Biodiversity and Ecology of Fungi, Lichens and Mosses. Kerner von Marilaun Workshop 2015 in Memory of Josef Poelt. Biosystematics and Ecology Series (Verlag der Österreichischen Akademie der Wissenschaften, Wien, 2018), Vol. 34, pp. 547–563.

  26. F. M. Hueber, “Rotted wood-alga-fungus: history and life of Prototaxites Dawson 1859,” Rev. Palaeobot. Palynol. 116 (1–2), 123–158 (2001).

    Article  Google Scholar 

  27. P. Kabanov, “Stratigraphic unconformities: review of the concept and examples from the Middle-Upper Paleozoic,” in Seismic and Sequence Stratigraphy and Integrated Stratigraphy – New Insights and Contributions (2017), Ch. 6, pp. 101–127.

  28. V. A. Krassilov, M. G. Raskatova, and A. A. Istchenko, “A new archaeopteridaliean plant from the Devonian of Pavlovsk, U.S.S.R,” Rev. Palaeobot. Palynol. 53, 163–173 (1987).

    Article  Google Scholar 

  29. S. K. G. Mendonca, E. M. V. Moraes, X. L. Otero, T. O. Ferreira, M. M. Correa, J. E. S. Sousa, C. W. A. Nascimento, L. V. M. W. Neves, and V. S. Souza Junior, “Occurrence and pedogenesis of acid sulfate soils in northeastern Brazil,” Catena 196, 104937 (2021).

    Article  CAS  Google Scholar 

  30. A. D. Miall, “The valuation of unconformities,” Earth-Sci. Rev. 163, 22–71 (2016).

    Article  ADS  CAS  Google Scholar 

  31. Mössbauer Spectroscopy, Ed. by Y. Yoshida and G. Langouche (Springer, 2013).

    Google Scholar 

  32. E. Murad and J. Cashion, Mössbauer Spectroscopy of Environmental Materials and their Industrial Utilization (Kluwer, 2004).

    Book  Google Scholar 

  33. S. Nabhan, T. Luber, F. Scheffler, and C. Heubeck, “Climatic and geochemical implications of Archean pedogenic gypsum in the Moodies Group (∼3.2 Ga), Barberton Greenstone Belt, South Africa,” Precambrian Res. 275, 119–134 (2016).

    Article  ADS  CAS  Google Scholar 

  34. M. P. Nelsen and C. K. Boyce, “What to do with Prototaxites?,” Int. J. Plant Sci. 183 (6), 556–565 (2022).

    Article  Google Scholar 

  35. G. J. Retallack, “Paleosols and paleoenvironments of early Mars,” Geology 42 (9), 755–758 (2014).

    Article  ADS  Google Scholar 

  36. G. J. Retallack, “The oldest known paleosol profiles on Earth: 3.46 Ga Panorama Formation, Western Australia,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 489, 230–248 (2018).

    Article  Google Scholar 

  37. G. J. Retallack, “Ordovician-Devonian lichen canopies before evolution of woody trees,” Gondwana Res. 106, 211–223 (2022).

    Article  ADS  Google Scholar 

  38. G. J. Retallack, “Soil salt and microbiome diversification over the past 3700 million years,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 598, 111016 (2022).

    Article  Google Scholar 

  39. G. J. Retallack, S. Jepson, and A. Broz, “Petrogypsic paleosols on Mars,” Icarus 394, 115436 (2023).

    Article  CAS  Google Scholar 

  40. G. J. Retallack and N. Noffke, “Are there ancient soils in the 3.7 Ga Isua Greenstone Belt, Greenland?,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 514, 18–30 (2019).

    Article  Google Scholar 

  41. C. V. Rubinstein and V. Vajda, “Baltica cradle of early land plants? Oldest record of trilete spores and diverse cryptospore assemblages; evidence from Ordovician successions of Sweden,” GFF 141 (3), 181–190 (2019).

    Article  CAS  Google Scholar 

  42. C. R. Scotese, Atlas of Earth History, Part 1: Paleogeography (PALEOMAP Project, Arlington, 2001).

  43. T. N. Taylor, E. L. Taylor, and M. Krings, Paleobotany and the Evolution of Plants (Academic Press, 2009).

    Google Scholar 

  44. C. H. Wellman, B. Cascales-Miñana, T. Servais, “Terrestrialization in the Ordovician,” Geol. Soc. 532 (1), 171–190 (2022).

    Article  Google Scholar 

  45. B. P. Wilson, “Elevations of sulfurous layers in acid sulfate soils: what do they indicate about sea levels during the Holocene in eastern Australia? " Catena 62, 45–56 (2005).

    Article  CAS  Google Scholar 

  46. E. P. Zazovskaya, D. G. Fedorov-Davydov, T. V. Alekseeva, and M. I. Dergacheva, “Soils of Queen Maud Land” in The Soils of Antarctica (Springer, Berlin, 2015), pp. 21–44.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The analytical studies were performed at the Analytical center of the Pushchino Scientific Center for Biological Research, Russian Academy of Sciences. The authors thank the administration and geological service of the Pavlovsk-Nerud quarry for their assistance in fieldwork.

Funding

The work was supported by the Russian Science Foundation, project no. 22-27-00370.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Alekseeva.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by G. Chirikova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

The online version contains supplementary materials available at https://doi.org/10.1134/S1064229323602469.

Fig. S1 . Mineralogical composition of the surface weathering crusts on granite boulders (XRD data) from (1) PV22-2 and (2) PV20-9 paleosol profiles: Bt, biotite; Kln, kaolinite; Qz, quartz; Fsp, feldspar; Sm, smectite; and Gp, gypsum.

Fig. S2 . Mössbauer spectra of the surface weathering crusts on granite boulders (room temperature) from (a) PV22-2 and (b) PV20-9 paleosol profiles.

Fig. S3 . Mineral transformations in the surface weathering crusts on granite boulders (SEM data): (a) dissolution of the surfaces of quartz grains with development of etch pits; (b) dissolution of feldspar; (c) booklets of secondary kaolinite; (d) development of the films containing secondary K-feldspar and Fe-oxides; (e) dissolution of feldspar and development of secondary microcrystalline K-feldspar; (f) authigenic anatase; (g) authigenic gypsum rose; (h) authigenic Fe-sulfates; (i) Tasmanites (?); and (j) spore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseeva, T.V., Alekseev, A.O. Middle Devonian Acid Sulfate Paleosol: The First Finding in the Central Devonian Field (Voronezh High, Southern Russia). Eurasian Soil Sc. 57, 9–20 (2024). https://doi.org/10.1134/S1064229323602469

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323602469

Keywords:

Navigation