Skip to main content
Log in

Tillage Long-Term Effects on Soil Organic Matter Humification and Humic Acids Structural Changes in Regosol Profiles Typical of an Arid Region

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

This study aims to assess soil organic matter (SOM) humification and changes in molecular structures of humic acids (HAs) induced by long term management practices over soil profile under arid climate in south-eastern Tunisia. Two experimental fields were studied: the first was cultivated with olive tree and tilled for long term (CT) while the second was uncultivated without any management practices and with native vegetation (NC). Soil samples were collected at different depths from (CT) and (NC) profiles to determine chemical properties. Humic acids were isolated and studied by measuring UV-visible ratios (E465/665, E280/664 and E472/664) and fluorescence spectroscopy analysis. Results showed that long-term tillage practices reduced the SOM amount, aromatic condensation, molecular size and humification degree in surface layer of CT confirmed by the decrease in the fluorescence emission areas and UV-visible ratios. Inversely, in deep layers, results showed a greatly humified organic matter and aromatic structures condensation in CT. Long-term tillage leads to a significant decrease in aromatic condensation and OM humification in surface layers. Unmanaged soils provided a favorable environment to maintain OM chemical structures and restore soil quality under long-term management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. R. J. Albrecht, L. Petolit, G. Terrom, and C. Perissol, “Comparison between UV spectroscopy and nirs to assess humification process during sewage sludge and green wastes co-composing,” Bioresour. Technol. 102, 4495–4500 (2011). https://doi.org/10.1016/j.biortech.2010.12.053

    Article  CAS  Google Scholar 

  2. V. Aranda, M. J. Ayora-Cañada, A. Domínguez-Vidal, et al., “Effect of soil type and management (organic vs. conventional) on soil organic matter quality in olive groves in a semi-arid environment in Sierra Mágina Natural Park (S Spain),” Geoderma 164 (1–2), 54–63 (2011). https://doi.org/10.1016/j.geoderma.2011.05.010

    Article  CAS  Google Scholar 

  3. A. Baglieri, D. Vindrola, M. Gennari, and M. Negre, “Chemical and spectroscopic characterization of insoluble and soluble humic acid fractions at different pH values,” Chem. Biol. Technol. Agric. 1, 9 (2014). https://doi.org/10.1186/s40538-014-0009-x

    Article  CAS  Google Scholar 

  4. F. Bastida, E. Kandeler, T. Hernández, and C García, “Long-term effect of municipal solid waste amendment on microbial abundance and humus-associated enzyme activities under semiarid conditions,” Microbiol. Ecol. 55, 651–661 (2008). https://doi.org/10.1007/s00248-007-9308-0

    Article  Google Scholar 

  5. C. Bayer, J. Mielniczuk, L. Martin-Neto, and P.R. Ernani, “Stocks and humification degree of organic matter fractions as affected by no-tillage on a subtropical soil,” Plant Soil 238, 133–140 (2002). https://doi.org/10.1023/A:1014284329618

  6. I. Ben Mahmoud, H. Ben Mbareka, M. Medhioub, et al., “Monitoring organic matter humification during the composting of date palm wastes using chemical and spectroscopic analyses for arid soil quality improvement,” Commun. Soil Sci. Plant Anal. 54 (6), 805–818 (2022). https://doi.org/10.1080/00103624.2022.2130934

    Article  CAS  Google Scholar 

  7. H. Ben Mbarek, K. Gargouri, C. Mbadra, I. Ben Mahmoud, R. Chaker, S. Maktouf, O. Abbas, V. Baeten, and H. Rigane, “Effects of combination of tillage with olive mill wastewater on soil organic carbon groups in arid soils,” Arabian J. Geosci. 13, 255 (2020). https://doi.org/10.1007/s12517-020-5235-x

    Article  CAS  Google Scholar 

  8. H. Ben Mbarek, K. Gargouri, C. Mbadra, R. Chaker, Y. Souidi, O. Abbas, V. Baeten, and H. Rigane, “Change and spatial variability of soil organic matter humification after long-term tillage and olive mill wastewater application in arid regions,” Soil Res. 58, 388–399 (2020). https://doi.org/10.1071/SR19113

    Article  CAS  Google Scholar 

  9. L. P. Canellas, F. L. Olivares, N. O. Aguiar, D. L. Jones, A. Nebbioso, P. Mazzei, and A. Piccolo, “Humic and fulvic acids as biostimulants in horticulture,” Sci. Hortic. (Amsterdam, Neth.) 196, 15–27 (2015). https://doi.org/10.1016/j.scienta.2015.09.013

  10. R. Chaker, K. Gargouri, H. Ben Mbarek, S. Maktouf, et al., “Carbon and nitrogen balances and CO2 emission after exogenous organic matter application in arid soil,” Carbon Manage. 10, 23–36 (2019). https://doi.org/10.1080/17583004.2018.1544829

    Article  CAS  Google Scholar 

  11. D. Chalise, L. Kumar, R. Sharma, and P. Kristiansen, “Assessing the impacts of tillage and mulch on soil erosion and corn yield,” Agronomy 10, 63 (2020). https://doi.org/10.3390/agronomy10010063

    Article  Google Scholar 

  12. S. Chamaki, S. Taghvaeian, H. Zhang, and J. Warren, “Soil salinity variations in an irrigation scheme during a period of extreme dry and wet cycles,” Soil Syst. 3 (2), 35 (2019). https://doi.org/10.3390/SOILSYSTEMS3020035

    Article  CAS  Google Scholar 

  13. R. T. Conant, M. G. Ryan, G. I. Ågren, “Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward,” Global Change Biol. 17, 3392–3404 (2011). https://doi.org/10.1111/j.1365-2486.2011.02496.x

    Article  Google Scholar 

  14. P. C. Conceição, J. Dieckow, and C. Bayer, “Combined role of no-tillage and cropping systems in soil carbon stocks and stabilization,” Soil Tillage Res. 129, 40–47 (2013). https://doi.org/10.1016/J.STILL.2013.01.006

    Article  Google Scholar 

  15. S. De Gryze, J. Lee, S. Ogle, K. Paustian, and J. Six, “Assessing the potential for greenhouse gas mitigation in intensively managed annual cropping systems at the regional scale,” Agric., Ecosyst. Environ. 144 (1), 150–158 (2011). https://doi.org/10.1016/j.agee.2011.05.023

    Article  CAS  Google Scholar 

  16. M. S. Dolan, C. E. Clapp, R. R. Allmaras, J. M. Baker, and J. A. E. Molina, “Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management,” Soil Tillage Res. 89 (2), 221–231 (2006). https://doi.org/10.1016/j.still.2005.07.015

    Article  Google Scholar 

  17. J. W. Doran and M. S. Smith, “Organic matter management and utilization of soil and fertilizer nutrients,” in Soil Fertility and Organic Matter as Critical Components of Production Systems, Ed. by R. F. Follett, J. W. B. Stewart, and C. V. Cole (Soil Sci. Soc. Am., Madison, 1987), pp. 53–72. https://doi.org/10.2136/sssaspecpub19.c4

  18. N. Fehri, J. L. Ballais, and B. M. Michel, “Morphogenèse, climat et sociétés dans la plaine de Sfax (Tunisie) depuis le pléistocène supérieur: l’exemple du bassin versant de l’oued Chaal-tarfaoui,” Physio-Géo. Géogr. Phys. Environ. 1, (2007). https://doi.org/10.4000/physio-geo.1050

  19. M. Fuentes, G. Gonzalez-Gaitano, and J. M. Garcia-Mina, “The usefulness of UV-visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts,” Org. Geochem. 37, 1949–1959 (2006). https://doi.org/10.1016/j.orggeochem.2006.07.024

    Article  CAS  Google Scholar 

  20. J. C. García-Gil, S. Ceppi, M. Velasca, A. Polo, and N. Senesi, “Long-term effects of amendment with municipal solid waste compost on the elemental and acid functional group composition and pH-buffer capacity of soil humic acid,” Geoderma 121, 135–142 (2004). https://doi.org/10.1016/J.GEODERMA.2003.11.004

    Article  Google Scholar 

  21. D. V. Guimarães, M. I. S. Gonzaga, T. O. S. Silva, L. D. S. Thiago, D. S. D. Nildo, and I. S. M. Maria, “Soil organic matter pools and carbon fractions in soil under different land uses,” Soil Tillage Res. 126, 177–182 (2013). https://doi.org/10.1016/J.STILL.2012.07.010

    Article  Google Scholar 

  22. M. Habtamua, E. Eliasb, M. Argawb, and H. N. Bulley, “Effects of land use and landscape position on soil properties in dire watershed, central highlands of Ethiopia,” Eur. J. Soil Sci. 56 (7), 951–962 (2023). https://doi.org/10.1134/S1064229322602645

    Article  Google Scholar 

  23. W. Horwath, “Carbon cycling: the dynamics and formation of organic matter,” in Soil Microbiology, Ecology and Biochemistry, Ed. by E. A. Paul, 4th Ed (Academic Press, New York, 2015), pp. 339–382. https://doi.org/10.1134/S1064229322602645

  24. S. Hussain, Guo R, et al., “Carbon sequestration to avoid soil degradation: a review on the role of conservation tillage,” Plants 10 (10), (2021). https://doi.org/10.3390/plants10102001

  25. L. Jia, W. Zhao, R. Zhai, Y. An, and P. Pereira, “Quantifying the effects of contour tillage in controlling water erosion in China: a meta-analysis,” Catena 195, (2020). https://doi.org/10.1016/j.catena.2020.104829

  26. M. Julian, J. M. Alston, J. M. Beddow, and P. G. Pardey, “Agricultural research, productivity, and food prices in the long run,” Science 325 (5945), 1209–1210 (2009). https://doi.org/10.1126/science.1170451

    Article  CAS  Google Scholar 

  27. M. S. Kahlon and S. Gurpreet, “Effect of tillage practices on soil physico-chemical characteristics and wheat straw yield,” Int. J. Agric. Sci. 4, 289–293 (2014).

    Google Scholar 

  28. Q. Li, A. Li, T. Dai, Z. Fan, Y. Luo, et al., “Depth-dependent soil organic carbon dynamics of croplands across the Chengdu Plain of China from the 1980s to the 2010s,” Global Change Biol. 26, 4134–4146 (2020). https://doi.org/10.1111/gcb.15110

    Article  Google Scholar 

  29. Y. Li, Z. Li, Song Cui, S. Jagadamma, and Q. Zhang, “Residue retention and minimum tillage improve physical environment of the soil in croplands: a global meta-analysis,” Soil Tillage Res. 194, 104292 (2019). https://doi.org/10.1016/J.STILL.2019.06.009

    Article  Google Scholar 

  30. W. Machado, J. C. Franchini, M. Guimaraes, and J. T. Filho, “Spectroscopic characterisation of humic and fulvic acids in soil aggregates, Brazil,” Heliyon, e04078 (2020). https://doi.org/10.1016/j.heliyon.2020.e04078

  31. B. H. Martins, C. F. Araujo-Junior, M. Miyazawa, and K. M. Vieira, “Humic substances and its distribution in coffee crop under cover crops and weed control methods,” Sci. Agríc. (Piracicaba, Braz.) 73, 371–378 (2016). https://doi.org/10.1590/0103-9016-2015-0214

    Article  CAS  Google Scholar 

  32. T. Martins, S. C. Saab, D. M. B. P. Milori, A. M. Brinatti, J. A. Rosa, F. A. M. Cassaro, and L. F. Pires “Soil organic matter humification under different tillage managements evaluated by Laser Induced Fluorescence (LIF) and C/N ratio,” Soil Tillage Res. 111, 231–235 (2011). https://doi.org/10.1016/J.STILL.2010.10.009

    Article  Google Scholar 

  33. J. Medina, C. Monreal, D. Chabot, et al., “Microscopic and spectroscopic characterization of humic substances from a compost amended copper contaminated soil: main features and their potential effects on Cu immobilization,” Environ. Sci. Pollut. Res. 24 (16), 14104–14116 (2017). https://doi.org/10.1007/s11356-017-8981-x

    Article  CAS  Google Scholar 

  34. D. P. Milori, H. A. Galeti, L. Martin-Neto, et al., “Organic matter study of whole soil samples using laser-induced fluorescence spectroscopy,” Soil Sci. Soc. Am. J. 70, 57–63 (2006). https://doi.org/10.2136/SSSAJ2004.0270

    Article  CAS  Google Scholar 

  35. D. P. Milori, L. Martin-Neto, C., Bayer, et al., “Humification degree of soil humic acids determined by fluorescence spectroscopy,” Soil Sci. 167, 739–749 (2002). https://doi.org/10.1097/00010694-200211000-00004

    Article  CAS  Google Scholar 

  36. T. Mulugeta, A. Melese, and T. Wondwosen, “Effects of land use types on selected soil physical and chemical properties: the case of Kuyu District, Ethiopia,” Eur. J. Soil Sci. 8 (2), 94–109 (2019). https://doi.org/10.18393/ejss.510744

    Article  CAS  Google Scholar 

  37. A. C. V. Motta, D. W. Reeves, and J. T. Touchton, “Tillage intensity effects on chemical indicators of soil quality in two coastal plain soils,” Commun. Soil. Sci. Plant Anal. 33, 913–932 (2002).

    Article  CAS  Google Scholar 

  38. E. Ozlu and S. Kumar, “Response of soil organic carbon, pH, electrical conductivity, and water stable aggregates to long-term annual manure and inorganic fertilize,” Soil Sci. Soc. Am. J. 82 (5), (2018). https://doi.org/10.2136/sssaj2018.02.0082

  39. J. M. Pauwels, E. Van Ranst, M. Verloo, and A. M. Ze, “Manuel de laboratoire de pédologie,” Publ. Agric. 28, 75–126 (1992). http://hdl.handle.net/1854/LU-223183

  40. O. Purmalis and M. Klavins, “Comparative study of peat humic acids by using UV spectroscopy,” in Proceedings of 1st Annual International Interdisciplinary Conference, AIIC April 24-26, 2013 (Azores, 2013). https://doi.org/10.19044/esj.2013.v9n21p%p

  41. M. H. Rahman, A. Okubo, and S. Sugiyama, “Physical chemical and microbiological properties of an Andisol as related to land use and tillage practice,” Soil Tillage Res. 101, 10–19 (2008). https://doi.org/10.1016/j.still.2008.05.006

    Article  Google Scholar 

  42. C. Rivero, N. Senesi, J. Paolini, and V. D’Orazio, “Characteristics of humic acids of some venezuelan soils,” Geoderma 81, 227–239 (1998).

    Article  CAS  Google Scholar 

  43. G. P. Robertson, K. L. Gross, S. K. Hamilton, D. A. Landis, T. M. Schmidt, S. S. Snapp, and S. M. Swinton, “Farming for ecosystem services: an ecological approach to production agriculture,” BioScience 64, 404–415 (2014). https://doi.org/10.1093 /biosci/biu037

    Article  Google Scholar 

  44. N. Senesi, C. Plaza, A. Brunetti, and A. Polo, “A comparative survey of recent results on humic-like fractions in organic amendments and effects on native soil humic substances,” Soil Biol. Biochem. 39, 1244–1262 (2007). https://doi.org/10.1016/j.soilbio.2006.12.002

    Article  CAS  Google Scholar 

  45. A. Slepetiene and J. Slepetys, “Status of humus in soil under various long-term tillage systems,” Geoderma 127, 207–215 (2005). https://doi.org/10.1016/j.geoderma.2004.12.001

    Article  CAS  Google Scholar 

  46. F. Tivet, J. M., Sá, R. Lal, R. Lal, et al., “Assessing humification and organic C compounds by laser-induced fluorescence and FTIR spectroscopies under conventional and no-till management in Brazilian Oxisols,” Geoderma 207–208, 71–81 (2013).https://doi.org/10.1016/j.geoderma.2013.05.001

  47. A. Traversa, V. D’Orazio, G.N. Mezzapesa, et al., “Chemical and spectroscopic characteristics of humic acids and dissolved organic matter along two Alfisol profiles,” Chemosphere 111, 184–194 (2014). https://doi.org/10.1016/j.chemosphere.2014.03.063

    Article  CAS  Google Scholar 

  48. R. Xiao, X. Man, and B. Duan, “Carbon and nitrogen stocks in three types of Larixgmelinii forests in Daxing’an Mountains, Northeast China,” Forests 11 (3), 305 (2020). https://doi.org/10.3390/f11030305

    Article  CAS  Google Scholar 

  49. S. Wang, H. Wang, Y. Zhang, et al., “The influence of rotational tillage on soil water storage, water use efficiency and maize yield in semi-arid areas under varied rainfall conditions,” Agric. Water Manage. 203, 376–384 (2018a). https://doi.org/10.1016/j.agwat.2018.03.007

    Article  Google Scholar 

  50. V. Wesemael, J. Meersmans, and E. Goidts, “Agricultural management explains historic changes in regional soil carbon stocks,” Proc. Natl. Acad. Sci. U. S. A. 107 (33),14926–14930 (2010). https://doi.org/10.1073/pnas.1002592107

    Article  Google Scholar 

  51. L. Ufimtseva and A.A. Kalganov, “Influence of long-term flood with surface waters with high mineralization on group and fractional composition of the meadow soils humus,” Contemp. Probl. Ecol. 4, 550–553 (2011). https://doi.org/10.1134/S199542551105016X

    Article  Google Scholar 

  52. J. Zhang, F. Hu, H. Li, Q. Gao, X. Song, X. Ke, and L. Wong, “Effects of earthworm activity on humus composition and humic acid characteristics of soil in a maize residue amended rice-wheat rotation agroecosystem,” Appl. Soil Ecol. 51, 1–8 (2011).

    Article  Google Scholar 

  53. L. Zhe, C. Shiliu, S. Zenghui, W. Huanyuan, Q. Shaodong, L. Na, H. Jing, and D. Qiguang, “Tillage effects on soil properties and crop yield after land reclamation,” Sci. Rep. 11, 4611 (2021). https://doi.org/10.1038/s41598-021-84191-z

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors are thankful for the members of the organic farm located in the Châal region in Sfax (Tunisia).

Funding

This research was supported by the Ministry of Agriculture and Water Resources and the Ministry of Higher Education and Scientific Research of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imen Ben Mahmoud.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Mahmoud, I., Mbarek, H.B., Sánchez-Bellón, Á. et al. Tillage Long-Term Effects on Soil Organic Matter Humification and Humic Acids Structural Changes in Regosol Profiles Typical of an Arid Region. Eurasian Soil Sc. 57, 577–588 (2024). https://doi.org/10.1134/S1064229323602007

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323602007

Keywords:

Navigation