Skip to main content
Log in

Sizes and Ratios of Organic Carbon Pools in Gray Forest Soil under Long-Term Application of Mineral and Organic Fertilizers

  • AGRICULTURAL CHEMISTRY AND FERTILITY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Soil organic matter (SOM) is proposed to be subdivided into structural and process pools. The structural pools include particulate organic matter (CPOM) and mineral-associated organic matter (CMAOM) and the process pools comprise microbial biomass (Cmic) and potentially mineralizable organic matter (C0). The studies have been performed in a long-term microplot experiment on gray forest soil (Luvic Retic Greyzemic Phaeozem (Loamic)). Mineral (N, 90–360 kg/ha; P2O5, 75–300 kg/ha; and K2O, 100–400 kg/ha) and organic (25–100 t/ha of fresh cattle manure) fertilizers have been applied annually over nine years at increasing doses. The resulting increase in the soil organic carbon (Corg) stock from NPK and manure application has reached 5–10 and 38–83%, respectively. Extremely high doses of manure (700 to 900 t/ha over 9 years) have caused the soil saturation with Corg. The sizes of SOM pools decrease in the order CMAOM > CPOM > C0 > Cmic amounting to 7.91–12 g/kg (50–84% of Corg), 0.76–12 g/kg (8–50%), 0.32–1.71 g/kg (2.8–13.7%), and 0.09–0.56 g/kg (0.8–3.7%), respectively. The size of CPOM pool mainly depends on the dose of mineral and organic fertilizers, and the size of CMAOM pool, on the duration of fertilization. Both Cmic and C0 pools increase with the rise in the dose of manure and decrease with the rise in the NPK doses. The long-term manuring did not lead to a cumulative accumulation of C0 in the soil. It is emphasized that the separation of structural and process pools can be useful for monitoring of SOM quality and functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. V. Abakumov, V. I. Polyakov, and S. N. Chukov, “Approaches and methods for studying soil organic matter in the carbon polygons of Russia (review),” Eurasian Soil Sci. 55 (7), 849–860 (2022). https://doi.org/10.1134/S106422932207002X

    Article  Google Scholar 

  2. N. D. Ananyeva, E. A. Susyan, and E. G. Gavrilenko, “Determination of the soil microbial biomass carbon using the method of substrate-induced respiration,” Eurasian Soil Sci. 44 (11), 1215 (2011).https://doi.org/10.1134/S1064229311030021

    Article  Google Scholar 

  3. N. E. Zavyalova, “Carbon stocks and carbon protection capacity of soddy-podzolic soils in natural and agricultural ecosystems of the cis-Ural region,” Eurasian Soil Sci. 55 (8), 1140–1147 (2022). https://doi.org/10.1134/S1064229322080166

    Article  Google Scholar 

  4. I. V. Kovalev, V. M. Semenov, N. O. Kovaleva, T. N. Lebedeva, V. M. Yakovleva, and N. B. Pautova, “Estimation of the biogenicity and bioactivity of gleyed agrogray nondrained and drained soils,” Eurasian Soil Sci. 54 (7), 1059–1067 (2021). https://doi.org/10.1134/S1064229321070073

    Article  Google Scholar 

  5. B. M. Kogut and V. M. Semenov, “Estimation of soil saturation with organic carbon,” Dokuchaev Soil Bulletin 102, 103–124 (2020). [in Russian] https://doi.org/10.19047/0136-1694-2020-102-103-124

  6. B. M. Kogut, V. M. Semenov, Z. S. Artem’eva, and N. N. Danchenko, " Humus Depletion and Soil Carbon Sequestration," Agrokhimiya, No. 5, 3–13 (2021). [in Russian] https://doi.org/10.31857/S0002188121050070

  7. D. A. Nikitin, M. V. Semenov, T. I. Chernov, N. A. Ksenofontova, A. D. Zhelezova, E. A. Ivanova, N. B. Khitrov, and A. L. Stepanov, “Microbiological indicators of soil ecological functions: a review,” Eurasian Soil Sci. 55 (2), 221–234 (2022). https://doi.org/10.1134/S1064229322020090

    Article  Google Scholar 

  8. N. B. Pautova, N. A. Semenova, D. P. Khromychkina, T. N. Lebedeva, and V. M. Semenov, “Determination of Active Organic Matter in Fresh Farmyard Manure Using the Biokinetic Method,” Agrokhimiya, No. 9, 29–39 (2018). [in Russian] https://doi.org/10.1134/S0002188118090107

  9. V. M. Semenov, L. A. Ivannikova, and T. V. Kuznetsova, “Structural and functional state of soil organic matter,” in Soil Processes and Spatial and Temporal Organization of Soils (Nauka, Moscow, 2006), pp. 230–247 [in Russian].

    Google Scholar 

  10. V. M. Semenov and B. M. Kogut, Soil Organic Matter (GEOS, Moscow) 233 p. [in Russian].

  11. V. M. Semenov, B. M. Kogut, N. B. Zinyakova, N. P. Masyutenko, L. S. Malyukova, T. N. Lebedeva, and A. S. Tulina, “Biologically active organic matter in soils of European Russia,” Eurasian Soil Sci. 51 (4), 434–447 (2018). https://doi.org/10.1134/S1064229318040117

    Article  Google Scholar 

  12. V. M. Semenov, T. N. Lebedeva, and N. B. Pautova, “Particulate organic matter in noncultivated and arable soils,” Eurasian Soil Sci. 52 (4), 396–404 (2019). https://doi.org/10.1134/S1064229319040136

    Article  Google Scholar 

  13. V. M. Semenov, T. N. Lebedeva, N. B. Zinyakova, D. A. Sokolov, and M. V. Semenov, “Eutrophication of arable soil: comparative effect of mineral and organic fertilizer systems,” Eurasian Soil Sci. 56 (1), 49–62 (2023). https://doi.org/10.1134/S1064229322601627

    Article  Google Scholar 

  14. V. M. Semenov, T. N. Lebedeva, N. B. Pautova, D. P. Khromychkina, I. V. Kovalev, and N. O. Kovaleva, “Relationships between the size of aggregates, particulate organic matter content, and decomposition of plant residues in soil,” Eurasian Soil Sci. 53 (4), 454–466 (2020). https://doi.org/10.1134/S1064229320040134

    Article  Google Scholar 

  15. V. M. Semenov, N. B. Pautova, T. N. Lebedeva, D. P. Khromychkina, N. A. Semenova, and V. O. Lopes de Gerenyu, “Plant residues decomposition and formation of active organic matter in the soil of the incubation experiments,” Eurasian Soil Sci. 52 (10), 1183–1194 (2019). https://doi.org/10.1134/S1064229319100119

    Article  Google Scholar 

  16. V. G. Sychev, A. N. Naliukhin, L. K. Shevtsova, O. V. Rukhovich, and M. V. Belichenko, “Influence of fertilizer systems on soil organic carbon content and crop yield: results of long-term field experiments at the geographical network of research stations in Russia,” Eurasian Soil Sci. 53 (12), 1794–1808 (2020). https://doi.org/10.1134/S1064229320120133

    Article  Google Scholar 

  17. A. K. Khodzhaeva and V. M. Semenov, “Distribution of active organic matter in the soil profiles of natural and agricultural ecosystems,” Eurasian Soil Sci. 48 (12), 1361–1369 (2015). https://doi.org/10.1134/S1064229315120108

    Article  Google Scholar 

  18. I. N. Sharkov and A. A. Danilova, “Influence of agricultural practices on the change in the content of humus in arable soils,” Agrokhimiya, No. 12, 72–81 (2010). [in Russian]

    Google Scholar 

  19. R. Alvarez, “A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage,” Soil Use Manage. 21, 38–52 (2005). https://doi.org/10.1079/SUM2005291

    Article  Google Scholar 

  20. D. Angers, D. Arrouays, R. Cardinael, C. Chenu, M. Corbeels, J. Demenois, M. Farrell, M. Martin, B. Minasny, S. Recous, and J. Six, “A well-established fact: rapid mineralization of organic inputs is an important factor for soil carbon sequestration,” Eur. J. Soil Sci. 73 (3), e13242 (2022). https://doi.org/10.1111/ejss.13242

    Article  Google Scholar 

  21. I. Basile–Doelsch, J. Balesdent, and S. Pellerin, “Reviews and syntheses: the mechanisms underlying carbon storage in soil,” Biogeosciences 17 (21), 5223–5242 (2020). https://doi.org/10.5194/bg-17-5223-2020

    Article  Google Scholar 

  22. P. C. Baveye, L. S. Schnee, P. Boivin, M. Laba, and R. Radulovich, “Soil organic matter research and climate change: merely re-storing carbon versus restoring soil functions,” Front. Environ. Sci. 8, 579904 (2020). https://doi.org/10.3389/fenvs.2020.579904

    Article  Google Scholar 

  23. J. Berthelin, M. Laba, G. Lemaire, D. Powlson, D. Tessier, M. Wander, and P. C. Baveye, “Soil carbon sequestration for climate change mitigation: Mineralization kinetics of organic inputs as an overlooked limitation,” Eur. J. Soil Sci. 73 (1), e13221 (2022). https://doi.org/10.1111/ejss.13221

    Article  Google Scholar 

  24. C. A. Cambardella and E. T. Elliott, “Particulate soil organic-matter changes across a grassland cultivation sequence,” Soil Sci. Soc. Am. J. 56 (3), 777–783 (1992). https://doi.org/10.2136/sssaj1992.03615995005600030017x

    Article  Google Scholar 

  25. M. J. Castellano, K. E. Mueller, D. C. Olk, J. E. Sawyer, and J. Six, “Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept,” Global Change Biol. 21 (9), 3200–3209 (2015). https://doi.org/10.1111/gcb.12982

    Article  Google Scholar 

  26. Y. Chen, M. Camps-Arbestain, Q. Shen, B. Singh, and M. L. Cayuela, “The long-term role of organic amendments in building soil nutrient fertility: a meta-analysis and review,” Nutr. Cycling Agroecosyst. 111, 103–125 (2018). https://doi.org/10.1007/s10705-017-9903-5

    Article  Google Scholar 

  27. C. Chenu, D. A. Angers, P. Barré, D. Derrien, D. Arrouays, and J. Balesdent, “Increasing organic stocks in agricultural soils: knowledge gaps and potential innovations,” Soil Tillage Res. 188, 41–52 (2019). https://doi.org/10.1016/j.still.2018.04.011

    Article  Google Scholar 

  28. S. F. Christopher and R. Lal, “Nitrogen management affects carbon sequestration in North American cropland soils,” Crit. Rev. Plant Sci. 26 (1), 45–64 (2007). https://doi.org/10.1080/07352680601174830

    Article  Google Scholar 

  29. M. F. Cotrufo, M. G. Ranalli, M. L. Haddix, J. Six, and E. Lugato, “Soil carbon storage informed by particulate and mineral-associated organic matter,” Nat. Geosci. 12, 989–994 (2019). https://doi.org/10.1038/s41561-019-0484-6

    Article  Google Scholar 

  30. M. F. Cotrufo, J. L. Soong, A. J. Horton, E. E. Campbell, M. L. Haddix, D. H. Wall, and W. J. Parton, “Formation of soil organic matter via biochemical and physical pathways of litter mass loss,” Nat. Geosci. 8, 776–779 (2015). https://doi.org/10.1038/NGEO2520

    Article  Google Scholar 

  31. M. F. Cotrufo, M. D. Wallenstein, C. M. Boot, K. Denef, and E. Paul, “The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?,” Global Change Biol. 19 (4), 988–995 (2013). https://doi.org/10.1111/gcb.12113

    Article  Google Scholar 

  32. Y. Du, B. Cui, Q. Zhang, Z. Wang, J. Sun, and W. Niu, “Effects of manure fertilizer on crop yield and soil properties in China: a meta-analysis,” Catena 193, 104617 (2020). https://doi.org/10.1016/j.catena.2020.104617

    Article  Google Scholar 

  33. W. Feng, M. Xu, M. Fan, S. S. Malhi, J. J. Schoenau, J. Six, and A. F. Plante, “Testing for soil carbon saturation behavior in agricultural soils receiving long-term manure amendments,” Can. J. Soil Sci. 94 (3), 281–294 (2014). https://doi.org/10.4141/cjss2013-012

    Article  Google Scholar 

  34. D. Geisseler and K. M. Scow, “Long-term effects of mineral fertilizers on soil microorganisms – a review,” Soil Biol. Biochem. 75, 54–63 (2014). https://doi.org/10.1016/j.soilbio.2014.03.023

    Article  Google Scholar 

  35. E. G. Gregorich, M. H. Beare, U. F. McKim, and J. O. Skjemstad, “Chemical and biological characteristics of physically uncomplexed organic matter,” Soil Sci. Soc. Am. J. 70 (3), 975–985 (2006). https://doi.org/10.2136/sssaj2005.0116

    Article  Google Scholar 

  36. A. Gross and B. Glaser, “Meta‑analysis on how manure application changes soil organic carbon storage,” Sci. Rep. 11, 5516 (2021). https://doi.org/10.1038/s41598-021-82739-7

    Article  Google Scholar 

  37. M. L. Haddix, E. G. Gregorich, B. L. Helgason, H. Janzen, B. H. Ellert, and M. F. Cotrufo, “Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil,” Geoderma 363, 114160 (2020). https://doi.org/10.1016/j.geoderma.2019.114160

    Article  Google Scholar 

  38. P. Han, W. Zhang, G. Wang, W. Sun, and Y. Huang, “Changes in soil organic carbon in croplands subjected to fertilizer management. A global meta-analysis,” Sci. Rep. 6, 27199 (2016). https://doi.org/10.1038/srep27199

    Article  Google Scholar 

  39. R. Hijbeek, M. K. van Ittersum, H. F. M. ten Berge, G. Gort, H. Spiegel, and A. P. Whitemore, “Do organic inputs matter – a meta-analysis of additional yield effects for arable crops in Europe,” Plant Soil 411, 293–303 (2017). https://doi.org/10.1007/s11104-016-3031-x

    Article  Google Scholar 

  40. E. Hoffland, T. W. Kuyper, R. N. J. Comans, and R. E. Creamer, “Eco-functionality of organic matter in soils,” Plant Soil 455, 1–22 (2020). https://doi.org/10.1007/s11104-020-04651-9

    Article  Google Scholar 

  41. H. H. Janzen, “The soil carbon dilemma: shall we hoard it or use it?,” Soil Biol. Biochem. 38 (3), 419–424 (2006). https://doi.org/10.1016/j.soilbio.2005.10.008

    Article  Google Scholar 

  42. G. Jiang, W. Zhang, M. Xu, Y. Kuzyakov, X. Zhang, J. Wang, J. Di, and D. V. Murphy, “Manure and mineral fertilizer effects on crop yield and soil carbon sequestration: a meta-analysis and modeling across China,” Global Biogeochem. Cycles 32 (11), 1659–1672 (2018). https://doi.org/10.1029/2018GB005960

    Article  Google Scholar 

  43. C. M. Kallenbach, A. S. Grandy, S. D. Frey, and A. F. Diefendorf, “Microbial physiology and necromass regulate agricultural soil carbon accumulation,” Soil Biol. Biochem. 91, 279–290 (2015). https://doi.org/10.1016/j.soilbio.2015.09.005

    Article  Google Scholar 

  44. I. Kögel–Knabner, M. Wiesmeier, and S. Mayer, “Mechanisms of soil organic carbon sequestration and implications for management,” in Understanding and Fostering Soil Carbon Sequestration, Ed. by C. Rumpel (Burleigh Dodds Sci. Publ. Lim., Cambridge, 2022), pp. 1–36. https://doi.org/10.19103/AS.2022.0106.02

  45. M. Körschens, “Long-term field experiments (LTEs)–importance, overview, soil organic matter,” in Exploring and Optimizing Agricultural Landscapes, Ed. by L. Mueller et al. (Springer, Cham, 2021), pp. 215–231. https://doi.org/10.1007/978-3-030-67448-9_8

  46. J. K. Ladha, C. K. Reddy, A. T. Padre, and C. van Kessel, “Role of nitrogen fertilization in sustaining organic matter in cultivated soils,” J. Environ. Qual. 40 (6), 1756–1766 (2011). https://doi.org/10.2134/jeq2011.0064

    Article  Google Scholar 

  47. R. Lal, “Soil carbon sequestration to mitigate climate change,” Geoderma 123, 1–22 (2004). https://doi.org/10.1016/j.geoderma.2004.01.032

    Article  Google Scholar 

  48. R. Lal, “Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security,” BioScience 60, 708–721 (2010). https://doi.org/10.1525/bio.2010.60.9.8

    Article  Google Scholar 

  49. R. Lal, “Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems,” Global Change Biol. 24 (8), 3285–3301 (2018). https://doi.org/10.1111/gcb.14054

    Article  Google Scholar 

  50. R. Lal, P. Smith, H. F. Jungkunst, W. J. Mitsch, J. Lehmann, P. K. R. Nair, A. B. McBratney, J. C. de Moraes Sá, J. Schneider, Y. L. Zinn, A. L. A. Skorupa, H.-L. Zhang, B. Minasny, C. Srinivasrao, and N. H. Ravindranath, “The carbon sequestration potential of terrestrial ecosystems,” J. Soil Water Conserv. 73 (6), 145A–152A (2018). https://doi.org/10.2489/jswc.73.6.145A

    Article  Google Scholar 

  51. J. M. Lavallee, J. L. Soong, and M. F. Cotrufo, “Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century,” Global Change Biol. 26 (1), 261–273 (2020). https://doi.org/10.1111/gcb.14859

    Article  Google Scholar 

  52. J. Lehmann and M. Kleber, “The contentious nature of soil organic matter,” Nature 528, 60–68 (2015). https://doi.org/10.1038/nature16069

    Article  Google Scholar 

  53. B. Li, H. Song, W. Cao, Y. Wang, J. Chen, and J. Guo, “Responses of soil organic carbon stock to animal manure application: a new global synthesis integrating the impacts of agricultural managements and environmental conditions,” Global Change Biol. 27 (20), 5356–5367 (2021). https://doi.org/10.1111/gcb.15731

    Article  Google Scholar 

  54. C. Liang, “Soil microbial carbon pump: mechanism and appraisal,” Soil Ecol. Lett. 2 (4), 241–254 (2020). https://doi.org/10.1007/s42832-020-0052-4

    Article  Google Scholar 

  55. C. Liang, W. Amelung, J. Lehmann, and M. Kästner, “Quantitative assessment of microbial necromass contribution to soil organic matter,” Global Change Biol. 25 (11), 3578–3590 (2019). https://doi.org/10.1111/gcb.14781

    Article  Google Scholar 

  56. C. Liang, X. Hao, J. Schoenau, B.-L. Ma, T. Zhang, J. D. MacDonald, M. Chantigny, M. Dyck, W. N. Smith, S. S. Malhi, A. Thiagarajan, J. Lafond, and D. Angers, “Manure-induced carbon retention measured from long-term field studies in Canada,” Agric., Ecosyst. Environ. 321, 107619 (2021). https://doi.org/10.1016/j.agee.2021.107619

    Article  Google Scholar 

  57. M. Lu, X. Zhou, Y. Luo, Y. Yang, C. Fang, J. Chen, and B. Li, “Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis,” Agric., Ecosyst. Environ. 140, 234–244 (2011). https://doi.org/10.1016/j.agee.2010.12.010

    Article  Google Scholar 

  58. É. Maillard and D. A. Angers, “Animal manure application and soil organic carbon stocks. A meta-analysis,” Global Change Biol. 20 (2), 666–679 (2014). https://doi.org/10.1111/gcb.12438

    Article  Google Scholar 

  59. L. K. Mann, “A regional comparison of carbon in cultivated and uncultivated allisols and mollisols in the Central United States,” Geoderma 36 (3–4), 241–253 (1985). https://doi.org/10.1016/0016-7061(85)90005-9

    Article  Google Scholar 

  60. L. K. Mann, “Changes in soil carbon storage after cultivation,” Soil Sci. 142 (5), 279–288 (1986).

    Article  Google Scholar 

  61. B. Minasny, B. P. Malone, A. B. McBratney, D. A. Angers, D. Arrouays, A. Chambers, V. Chaplot, Z. S. Chen, K. Cheng, et al., “Soil carbon 4 per mille,” Geoderma 292, 59–86 (2017). https://doi.org/10.1016/j.geoderma.2017.01.002

    Article  Google Scholar 

  62. P. L. O' Brien and J. L. Hatfield, “Dairy manure and synthetic fertilizer: a meta-analysis of crop production and environmental quality,” Agrosyst. Geosci. Environ. 2, 190027 (2019). https://doi.org/10.2134/age2019.04.0027

    Article  Google Scholar 

  63. K. Paustian, O. Andren, H. H. Janzen, R. Lal, P. Smith, G. Tian, H. Tiessen, M. Van Noordwijk, and P. L. Woomer, “Agricultural soils as a sink to mitigate CO2 emissions,” Soil Use Manage. 13 (4), 230–244 (1997). https://doi.org/10.1111/j.1475-2743.1997.tb00594.x

    Article  Google Scholar 

  64. F. Ren, X. Zhang, J. Liu, N. Sun, Z. Sun, L. Wu, and M. Xu, “A synthetic analysis of livestock manure substitution effects on organic carbon changes in China’s arable topsoil,” Catena 171, 1–10 (2018). https://doi.org/10.1016/j.catena.2018.06.036

    Article  Google Scholar 

  65. M.-E. Samson, M. H. Chantigny, A. Vanasse, S. Menasseri-Aubry, I. Royer, and D. A. Angers, “Management practices differently affect particulate and mineral-associated organic matter and their precursors in arable soils,” Soil Biol. Biochem. 148, 107867 (2020). https://doi.org/10.1016/j.soilbio.2020.107867

    Article  Google Scholar 

  66. J. Sanderman, T. Hengl, and G. J. Fiske, “Soil carbon debt of 12,000 years of human land use,” Proc. Natl. Acad. Sci. U. S. A. 114 (36), 9575–9580 (2017). https://doi.org/10.1073/pnas.1706103114

    Article  Google Scholar 

  67. M. Schnitzer, D. F. E. McArthur, H.-R. Schulten, L. M. Kozak, and P. M. Huang, “Long-term cultivation effects on the quantity and quality of organic matter in selected Canadian prairie soils,” Geoderma 130, 141–156 (2006). https://doi.org/10.1016/j.geoderma.2005.01.021

    Article  Google Scholar 

  68. G. P. Sparling, “Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter,” Aust. J. Soil Res. 30 (2), 195–207 (1992). https://doi.org/10.1071/SR9920195

    Article  Google Scholar 

  69. C. E. Stewart, A. F. Plante, K. Paustian, R. T. Conant, and J. Six, “Soil carbon saturation: Linking concept and measurable carbon pools,” Soil Sci. Soc. Am. J. 72 (2), 379–392 (2008). https://doi.org/10.2136/sssaj2007.0104

    Article  Google Scholar 

  70. U. Stockmann, M. A. Adams, J. W. Crawford, D. J. Field, N. Henakaarchchi, M. Jenkins, B. Minasny, A. B. McBratney, V. R. de Courcelles, K. Singh, I. Wheeler, L. Abbott, D. A. Angers, J. Baldock, M. Bird, P. C. Brookes, C. Chenu, J. D. Jastrow, R. Lal, J. Lehmann, A. G. O' Donnell, W. J. Parton, D. Whitehead, and M. Zimmermann, “The knowns, known unknowns and unknowns of sequestration of soil organic carbon,” Agric., Ecosyst. Environ. 164, 80–99 (2013). https://doi.org/10.1016/j.agee.2012.10.001

    Article  Google Scholar 

  71. K. Tian, Y. Zhao, X. Xu, N. Hai, B. Huang, and W. Deng, “Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: a meta-analysis,” Agric., Ecosyst. Environ. 204, 40–50 (2015). https://doi.org/10.1016/j.agee.2015.02.008

    Article  Google Scholar 

  72. K. K. Treseder, “Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies,” Ecol. Lett. 11 (10), 1111–1120 (2008). https://doi.org/10.1111/j.1461-0248.2008.01230.x

    Article  Google Scholar 

  73. L. Triberti, A. Nastri, G. Giordani, F. Comellini, G. Baldoni, and G. Toderi, “Can mineral and organic fertilization help sequestrate carbon dioxide in cropland?,” Eur. J. Agron. 29, 13–20 (2008). https://doi.org/10.1016/j.eja.2008.01.009

    Article  Google Scholar 

  74. M. Von Lützow, I. Kögel-Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, B. Marschner, and H. Flessa, “Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—a review,” Eur. J. Soil Sci. 57, 426–445 (2006). https://doi.org/10.1111/j.1365-2389.2006.00809.x

    Article  Google Scholar 

  75. M. Wander, “Soil organic matter fractions and their relevance to soil function,” in Soil Organic Matter in Sustainable Agriculture, Ed. by F. Magdoff and R. R. Weil (CRC Press, Boca Raton etc, 2004), pp. 67–102. https://doi.org/10.1201/9780203496374

  76. M. Wei, G. Hu, H. Wang, E. Bai, Y. Lou, A. Zhang, and Y. Zhuge, “35 years of manure and chemical fertilizer application alters soil microbial community composition in a Fluvo-aquic soil in Northern China,” Eur. J. Soil Biol. 82, 27–34 (2017). https://doi.org/10.1016/j.ejsobi.2017.08.002

    Article  Google Scholar 

  77. T. O. West and J. Six, “Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity,” Clim. Change 80, 25–41 (2007). https://doi.org/10.1007/s10584-006-9173-8

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 22-26-00100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Semenov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Chirikova

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, V.M., Lebedeva, T.N., Zinyakova, N.B. et al. Sizes and Ratios of Organic Carbon Pools in Gray Forest Soil under Long-Term Application of Mineral and Organic Fertilizers. Eurasian Soil Sc. 56, 470–487 (2023). https://doi.org/10.1134/S1064229322602517

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322602517

Keywords:

Navigation