Skip to main content
Log in

Effect of Composition and Properties of Soils and Soil-Sand Substrates Contaminated with Copper on Morphometric Parameters of Barley Plants

  • AGRICULTURAL CHEMISTRY AND SOIL FERTILITY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

In a multifactor vegetation experiment, the effect of composition and properties of soils and soil-sand substrates contaminated with various doses of copper acetate on the morphometric parameters of spring barley seedlings was studied. It has been shown that germination and seed germination energy, as well as the length of roots, aboveground parts, and dry biomass of plants depend in a complex way on the concentration of Cu in soils and substrates, as well as on their buffering capacity to heavy metals. Two mechanisms of Cu influence on plant development have been revealed, i.e., metabolic at СCu ≤ 500 mg/kg of soil and diffusional at СCu ≥ 500 mg/kg. Using the methods of regression analysis of experimental data, a multiple regression equation has been obtained that combines the morphometric index of plants, the concentration of Cu in substrates, and the buffering capacity of soils to Cu. On its basis, in the soil buffering capacity–Cu concentration coordinates, a curve of values of the maximum permissible concentrations of Cu in soils was built on a plane in the range from 17 to 2047 mg/kg. It permits us to separate the zone of permissible development of barley plants (a decrease of the morphometric index by 15%) from the zone of exceeding the accepted values of the maximum permissible concentration of Cu. Thus, the maximum permissible concentration is considered to be a function of Cu concentration, the soil buffering capacity to heavy metals, and plant species rather than a fixed value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. D. I. Bashmakov and A. S. Lukatkin, Ecological and Physiological Aspects of Accumulation and Distribution of Heavy Metals in Higher Plants (Mord. Gos. Univ., Saransk, 2009) [in Russian].

    Google Scholar 

  2. L. I. Goncharova, T. V. Chizh, Yu. V. Murygin, and O. S. Gubareva, “The influence of soil pollution with copper on the growth and biochemical parameters of fodder bean plants,” Agrokhimiya, No. 12, 58–62 (2010).

    Google Scholar 

  3. V. B. Ivanov, E. I. Bystrova, and I. V. Seregin, “Comparative impacts of heavy metals on root growth as related to their specificity and selectivity,” Russ. J. Plant Physiol. 50 (3), 398–406 (2003).

    Article  Google Scholar 

  4. V. B. Il’in, Heavy Metals and Non-Metals in the Soil-Plant System (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2012) [in Russian].

  5. V. B. Il’in, “Heavy metals in the soil-crop system,” Eurasian Soil Sci. 40 (9), 993–999 (2007).

    Article  Google Scholar 

  6. V. B. Il’in, “Estimation of buffer capacity of soils in relation to heavy metals,” Agrokhimiya, No. 10, 109–113 (1995).

    Google Scholar 

  7. V. B. Il’in and A. I. Syso, Microelements and Heavy Metals in Soils and Plants of the Novosibirsk Oblast (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  8. Impact Pollution of Soils with Heavy Metals and Fluorides, Ed. by N. G. Zyrin (Moscow, 1986) [in Russian].

    Google Scholar 

  9. R. V. Kaigorodov, Plant Resistance to Chemical Pollution (Permsk. Gos. Univ., Perm, 2010) [in Russian].

    Google Scholar 

  10. O. N. Kozhanova and A. G. Dmitrieva, “The physiological role of metals in the life of plant organisms,” in Physiology of Plant Organisms and the Role of Metals (Mosk. Univ., Moscow, 1989), pp. 7–55 [in Russian].

    Google Scholar 

  11. T. V. Pampura, M. Meili, K. Holm, F. Candaudap, and A. Probst, “Buried paleosols as reference objects for assessing the current level of soil pollution with lead in the Lower Volga steppes,” Eurasian Soil Sci. 52 (1), 34–49 (2019). https://doi.org/10.1134/S1064229319010113

    Article  Google Scholar 

  12. D. L. Pinskii, “Modern ideas about the mechanisms of absorption of heavy metals by soils,” in Evolution, Functioning, and Ecological Role of Soils as a Component of the Biosphere (Pushchino, 2020), pp. 55–64 [in Russian].

  13. D. L. Pinskii, T. M. Minkina, T. V. Bauer, D. G. Nevidomskaya, S. S. Mandzhieva, and M. V. Burachevskaya, “Copper adsorption by chernozem soils and parent rocks in Southern Russia,” Geochem. Int. 56 (3), 266–275 (2018). https://doi.org/10.1134/S0016702918030072

    Article  Google Scholar 

  14. D. L. Pinskii, T. M. Minkina, T. V. Bauer, D. G. Nevidomskaya, V. A. Shuvaeva, S. S. Mandzhieva, V. S. Tsitsuashvili, M. V. Burachevskaya, V. A. Chaplygin, A. V. Barakhov, A. A. Veligzhanin, R. D. Svetogorov, E. V. Khramov, and A. D. Iovcheva, “Identification of heavy metal compounds in technogenically transformed soils using sequential fractionation, XAFS spectroscopy, and XRD powder diffraction,” Eurasian Soil Sci. 55 (5), 613–626 (2022). https://doi.org/10.1134/S1064229322050076

    Article  Google Scholar 

  15. Soil, Cleaning of Populated Areas, Household and Industrial Waste, Sanitary Protection of the Soil. Hygiene Standards HS 2.1.7.020-94 “Approximate Permissible Concentrations (APCs) of Heavy Metals and Arsenic in Soils,” (Supplement No. 1 to the list of maximum permissible concentration and estimated permissible concentration No. 6229-91) (approved by Goskomsanepidnadzor of Russian Federation of December 27, 1994, No. 13).

  16. V. S. Putilina, I. V. Galitskaya, and T. I. Yuganova, Adsorption of Heavy Metals by Soils and Rocks. Characteristics of the Sorbent, Conditions, Parameters and Mechanisms of Adsorption. Analytical Review (Novosibirsk, 2009) [in Russian].

    Google Scholar 

  17. A. F. Titov, N. M. Kaznina, and V. V. Talanova, Heavy Metals and Plants (Karel. Nauchn. Tsentr Ross. Akad. Nauk, Petrozavodsk, 2014) [in Russian].

    Google Scholar 

  18. R. K. Chernova, E. S. Pogorelova, I. I. Parashchenko, and N. V. Ageeva, “Determination of lead content in soils of Saratov by fluorescent analysis,” Izv. Sarat. Univ. Nov. Ser. Ser. Khim. Biol. Ecol. 13 (3), 109–113 (2013).

    Google Scholar 

  19. P. A. Shary and D. L. Pinskii, “Statistical evaluation of the relationships between spatial variability in the organic carbon content in gray forest soils, soil density, concentrations of heavy metals, and topography,” Eurasian Soil Sci. 46 (11), 1076–1087 (2013). https://doi.org/10.1134/S1064229313090044

    Article  Google Scholar 

  20. T. Bauer, D. Pinskii, T. Minkina, D. Nevidomskaya, S. Mandzhieva, M. Burachevskaya, V. Chaplygin, and Y. Popileshko, “Time effect on the stabilization of technogenic copper compounds in solid phases of Haplic Chernozem,” Sci. Total Environ. 626, 1100–1107 (2018). https://doi.org/10.1016/j.scitotenv.2018.01.134

    Article  Google Scholar 

  21. A. Filipiak-Szok, M. Kurzawa, and E. Szlyk, “Determination of toxic metals by ICP-MS in Asiatic and European medicinal plants and dietary supplements,” J. Trace Elem. Med. Biol. 30, 54–58 (2015). https://doi.org/10.1016/j.jtemb.2014.10.008

    Article  Google Scholar 

  22. Y.-G. Gu, Q. Lin, and Y.-P. Gao, “Metals in exposed-lawn soils from 18 urban parks and its human health implications in southern China’s largest city, Guangzhou,” J. Cleaner Prod. 115, 122–129 (2016). https://doi.org/10.1016/j.jclepro.2015.12.031

    Article  Google Scholar 

  23. B. Hu, X. Jia, J. Hu, D. Xu, F. Xia, and Y. Li, “Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China,” Int. J. Environ. Res. Public Health 14, 1042 (2017). https://doi.org/10.3390/ijerph14091042

    Article  Google Scholar 

  24. M. Intawongse and J. R. Dean, “Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract,” Food Addit. Contam. 23, 36–48 (2006). https://doi.org/10.1080/02652030500387554

    Article  Google Scholar 

  25. L. Järup, “Hazards of heavy metal contamination,” Br. Med. Bull. 68, 167–182 (2003). https://doi.org/10.1093/bmb/1dg032

    Article  Google Scholar 

  26. A. Kabata-Pendias and A. B. Makherjee, Trace Element from Soil to Human (Springer, 2007).

    Book  Google Scholar 

  27. S. I. Kolesnikov, D. A. Zubkov, M. G. Zharkova, K. S. Kazeev, and Y. V. Akimenko, “Influence of oil and lead contamination of ordinary chernozem on growth and development of spring barley,” Russ. Agric. Sci. 45, 57–60 (2019).

    Article  Google Scholar 

  28. C. Leitzmann, “Nutrition ecology: the contribution of vegetarian diets,” Am. J. Clin. Nutr. 78, 657–659 (2003). https://doi.org/10.1093/ajcn/78.3.657S

    Article  Google Scholar 

  29. S. Mandzhieva, N. Chernikova, T. Dudnikova, D. Pinskii, T. Bauer, I. Zamulina, A. Barahov, M. Burachevskaya, and T. Minkina, “Influence of copper pollution of haplic calcic chernozem with various contents of sand fractions on morphobiometric Indicators of spring barley,” in KnE Life Sciences, Proceedings of 8th Scientific and Practical Conference “Biotechnology: Science and Practice” (2022), Vol. 2022, pp. 84–90. https://doi.org/10.18502/kls.v7i1.10110

  30. M. B. McBride, H. A. Shayler, H. M. Spliethoff, R. G. Mitchell, L. G. Marquez-Bravo, G. S. Ferenz, J. M. Russell-Anelli, L. Casey, and S. Bachman, “Concentrations of lead, cadmium and barium in urban garden-grown vegetables: the impact of soil variables,” Environ. Pollut. 194, 254–261 (2014). https://doi.org/10.1016/j.envpol.2014.07.036

    Article  Google Scholar 

  31. R. Nazar, N. Igbal, A. Masood, M. Iqbal, R. Khan, and N. Khan, “Cadmium toxicity in plants and role of mineral nutrients in its alleviation,” Am. J. Plant Sci. 3, 1476–1489 (2012).

    Article  Google Scholar 

  32. N. S. Sarwar, S. S. Malhi, M. H. Zia, A. Naeem, S. Bibia, and Gh. Farida, “Role of mineral nutrition in minimizing cadmium accumulation by plants,” J. Sci. Food Agric. 90, 925–937 (2010).

    Article  Google Scholar 

  33. I. N. Semenova, G. S. Sinigizova, A. B. Zulkaranaev, and G. S. Il’bulova, “Effect of copper and lead on the growth and development of plant by example of Anethum graveolens L.,” Mod. Probl. Sci. Educ., No. 3, 588–594 (2015).

  34. R. K. Sharma and M. Agrawal, “Biological effects of heavy metals: an overview,” J. Environ. Biol. 26, 301–313 (2005).

    Google Scholar 

  35. N. Verbruggen, C. Hermans, and H. Schat, “Mechanisms to cope with arsenic or cadmium excess in plants,” Curr. Opin. Plant Biol. 12, 364–372 (2009).

    Article  Google Scholar 

  36. F. Villiers, C. Ducruix, V. Hugouvieux, N. Jarno, E. Ezan, J. Garin, Ch. Junot, and J. Bourguignon, “Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches,” Proteomics 11, 1650–1663 (2011).

    Article  Google Scholar 

  37. Th. Wegelin, “PAK und Schwermetalle in Böden entlang stark befahrener Strassen. Amt für Gewässerschutz und Wasserbau. AGW Fachstelle Bodenschutz – FaBo. Zürich,” Umwelt Praxis, No. 11, 27–29 (1997).

    Google Scholar 

  38. A. Zwolak, M. Sarzynska, E. Szpyrka, and K. Stawarczyk, “Sources of soil pollution by heavy metals and their accumulation in vegetables: a review,” Water, Air, Soil Pollut. 230, 164 (2019). https://doi.org/10.1007/s11270-019-4221-y

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 19-29-05265-mk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Pinskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Eremina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinskii, D.L., Shary, P.A., Mandzhieva, S.S. et al. Effect of Composition and Properties of Soils and Soil-Sand Substrates Contaminated with Copper on Morphometric Parameters of Barley Plants. Eurasian Soil Sc. 56, 352–362 (2023). https://doi.org/10.1134/S1064229322602402

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322602402

Keywords:

Navigation