Skip to main content
Log in

The nitrogen isotopic composition in soils and plants: Its use in environmental studies (A Review)

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The results of studying the isotopic composition of the nitrogen in soils and plants and its use for characterizing the nitrogen cycle in ecosystems, the transformation of nitrogen compounds in soils, the sources of nitrogen nutrition for plants, and the assessment of the symbiotic nitrogen fixation’s contribution to the nitrogen budget of ecosystems were considered for a wide variety of natural and agricultural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Koren’kov and M. G. Bezvershenko, “The Use of Natural Isotopic Effects in Soil Science and Agricultural Chemistry,” Agrokhimiya, No. 12, 108–118 (1988).

  2. D. A. Koren’kov, N. I. Borisova, V. V. Zertsalov, and Yu. I. Semenov, “Isotopic Composition of Nitrogen in Some Soil Types of the Soviet Union and Its Spatial Variability,” Pochvovedenie, No. 7, 38–40 (1989).

  3. M. I. Makarov and T. I. Malysheva, “Natural 15N Concentration as an Integral Index of Transformation of Nitrogen Compounds in Alpine Ecosystems,” Abstracts of the Conf. Biospheric Functions of the Soil Cover (Pushchino, 2005), pp. 58–59 [in Russian].

  4. O. V. Menyailo and B. A. Hungate, “Carbon and Nitrogen Stable Isotopes in Forest Soils of Siberia,” Dokl. Akad. Nauk 408(5), 1–4 (2006) [Dokl. Earth Sciences 409 (5), 747–749 (2006)].

    Google Scholar 

  5. E. G. Morgun, Ya. G. Ryskov, M. I. Makarov, and S. A. Oleinik, “Geochemistry of Stable Isotopes: Possibilities and Some Results of Their Use in Soil Strudies,” in Ecology and Soils. Lectures and Reports at the XIII All-Russia Scholl Sessions (Pushchino, 2006), Vol. 5, pp. 330–344 [in Russian].

    Google Scholar 

  6. E. A. Muravin, A. V. Rybakov, and A. A. Kozlov, “The Content and Isotopic Composition of Acid-Hydrolyzable Nitrogen from Soddy-Podzolic Soils on Different Parts of a Slope under Usual and Erosion-Control Tillage Practices,” Agrokhimiya, No. 8, 5–10 (2001).

  7. E. A. Muravin, V. A. Chernikov, A. V. Rybakov, et al., “Isotopic Composition of Nitrogen of Soddy-Podzolic Soil after a Long-Term Application of Fertilizers,” Agrokhimiya, No. 6, 34–43 (2002).

  8. V. G. Onipchenko and M. I. Makarov, “Isotopic Composition of Nitrogen and the Type of Mycorrhizal Infection of Plants from Alpine Lichen Heaths in the Teberda Natural Reserve,” in Proc. VIII Intern. Conf. Biological Diversity in the Caucasus, Vol. 3 Ecology, Valeology, and Economy (Nal’chik, 2006), pp. 64–65 [in Russian].

  9. S. A. Billings and D. D. Richter, “Changes in Stable Isotopic Signatures of Soil Nitrogen and Carbon During 40 Years of Forest Development,” Oecologia 148, 325–333 (2006).

    Article  Google Scholar 

  10. E. Bremer and C. van Kessel, “Appraisal of the Nitrogen-15 Natural-Abundance Method for Quantifying Dinatrogen Fixation,” Soil Sci. Soc. Am. J. 54, 404–411 (1990).

    Google Scholar 

  11. F. E. Broadbent, R. S. Rauschkolb, K. A. Lewis, and G. Y. Chang, “Spatial Variability of Nitrogen-15 and Total Nitrogen in Some Virgin and Cultivated Soils,” Soil Sci. Soc. Am. J. 44, 524–527 (1980).

    Article  Google Scholar 

  12. H. H. Cheng, J. M. Bremner, and A. P. Edwards, “Variations of Nitrogen-15 Abundance in Soils,” Science 146, 1574–1575 (1964).

    Article  Google Scholar 

  13. W. J. Choi, S. M. Lee, H. M. Ro, et al., “Natural 15N Abundances of Maize and Soil Amended with Urea and Compost Pig Manure,” Plant Soil 245, 223–232 (2002).

    Article  Google Scholar 

  14. W. J. Choi, H. M. Ro, and E. A. Hobbie, “Patterns of Natural 15N in Soils and Plants from Chemically and Organically Fertilized Uplands,” Soil Biol. Biochem. 35, 1493–1500 (2003).

    Article  Google Scholar 

  15. W. J. Choi, H. M. Ro, and S. M. Lee, “Natural 15N Abundances of Inorganic Nitrogen in Soil Treated with Fertilizer and Compost Under Changing Moisture Regimes,” Soil Biol. Biochem. 35, 1289–1298 (2003).

    Article  Google Scholar 

  16. S. L. Connin, X. Feng, and R. A. Virginia, “Isotopic Discrimination During Long-Term Decomposition in An Arid Land Ecosystem,” Soil Biol. Biochem. 33, 41–51 (2001).

    Article  Google Scholar 

  17. T. E. Dawson, S. Mambelli, A. H. Plamboeck, et al., “Stable Isotopes in Plant Ecology,” Annual Rev. Ecol. System 33, 507–559 (2002).

    Article  Google Scholar 

  18. C. C. Delwiche and P. L. Steyn, “Nitrogen Isotope Fractionation in Soils and Microbial Reactions,” Environ. Sci. Technol. 4, 929–935 (1970).

    Article  Google Scholar 

  19. P. Dijkstra, A. Ishizu, R. Doucett, et al., “13C and 15N Natural Abundances of the Soil Microbial Biomass,” Soil Biol. Biochem. 38, 3257–3266 (2006).

    Article  Google Scholar 

  20. A. M. Domenach, F. Kurdali, and R. Bardin, “Estimation of Symbiotic Dinitrogen Fixation in Alder Forest by the Method Based on Natural 15N Abundance,” Plant Soil 118, 51–59 (1989).

    Article  Google Scholar 

  21. K. S. Emmerton, T. V. Callaghan, H. E. Jones, et al., “Assimilation and Isotopic Fractionation of Nitrogen by Mycorrhizal and Nonmycorrhizal Subarctic Plants,” New Phytol. 151, 513–524 (2001).

    Article  Google Scholar 

  22. K. S. Emmerton, T. V. Callaghan, H. E. Jones, et al., “Assimilation and Isotopic Fractionation of Nitrogen by Mycorrhizal Fungi,” New Phytol. 151, 503–511 (2001).

    Article  Google Scholar 

  23. Z. Eshetu and P. Högberg, “Effects of Land Use on 15N Natural Abundance of Soils in Ethiopian Highlands,” Plant Soil 222, 109–117 (2000).

    Article  Google Scholar 

  24. R. D. Evans, “Physiological Mechanisms Influencing Plant Nitrogen Isotope Composition,” Trends Plant Sci 6, 121–126 (2001).

    Article  Google Scholar 

  25. R. D. Evans and J. R. Ehleringer, “A Break in the Nitrogen Cycle in Aridland? Evidence from δ15N of Soils,” Oecologia 94, 314–317 (1993).

    Article  Google Scholar 

  26. R. E. Farrell, P. J. Sandercock, and C. Van Kessel, “Landscape-Scale Variations in Leached Nitrate: Relationship To Denitrification and Natural Nitrogen-15 Abundance,” Soil Sci. Soc. Am. J. 60, 1410–1415 (1996).

    Article  Google Scholar 

  27. A. Feigin, G. Shearer, D. H. Kohl, and B. Commoner, “The Amount and Nitrogen-15 Content of Nitrate in Soil Profiles from Two Central Illinois Fields in a Corn-Soybean Rotation,” Soil Sci. Soc. Am. J. 38, 465–471 (1974).

    Google Scholar 

  28. Jr. C. T. Garten, “Variation in Foliar 15N Abundance and the Availability of Soil Nitrogen on Walker Branch Watershed,” Ecology 74, 2098–2113 (1993).

    Article  Google Scholar 

  29. S. M. Gathumbi, G. Cadisch, and K. E. Giller, “15N Natural Abundance as a Tool for Assessing N2-Fixation of Herbaceous, Shrub and Tree Legumes in Improved Fallows,” Soil Biol. Biochem. 34, 1059–1071 (2002).

    Article  Google Scholar 

  30. G. Gebauer and M. Meyer, “15N and 13C Natural Abundance of Autotrophic and Myco-Heterotrophic Orchids Provides Insight into Nitrogen and Carbon Gain from Fungal Association,” New Phytol. 160, 209–223 (2003).

    Article  Google Scholar 

  31. G. Gebauer and A. F. S. Taylor, “15N Natural Abundance in Fruit Bodies of Different Functional Groups of Fungi in Relation to Substrate Utilization,” New Phytol. 142, 93–101 (1999).

    Article  Google Scholar 

  32. L. L. Handley and J. A. Raven, “The Use of Natural Abundance of Nitrogen Isotopes in Plant Physiology and Ecology,” Plant, Cell Environ. 15, 965–985 (1992).

    Article  Google Scholar 

  33. J. P. Hansen and F. P. Vinther, “Spatial Variability of Symbiotic N2 Fixation in Grass-White Clover Pastures Estimated by the 15N Isotope Dilution Method and the Natural 15N Abundance Method,” Plant Soil 230, 257–266 (2001).

    Article  Google Scholar 

  34. M. R. Henn and I. H. Chapela, “Ecophysiology of 13C and 15N Isotopic Fractionation in Forest Fungi and the Roots of the Saprotrophic-Mycorrhizal Divide,” Oecologia 128, 480–487 (2001).

    Article  Google Scholar 

  35. E. A. Hobbie, A. Jumpponen, and J. Trappe, “Foliar and Fungal 15N: 14N Ratios Reflect Development of Mycorrhizae and Nitrogen Supply During Primary Succession: Testing Analytical Models,” Oecologia 146, 258–268 (2005).

    Article  Google Scholar 

  36. E. A. Hobbie, S. A. Macko, and H. H. Shugart, “Insights into Nitrogen and Carbon Dynamics of Ectomycorrhizal and Saprotrophic Fungi from Isotopic Evidence,” Oecologia 118, 353–360 (1999).

    Article  Google Scholar 

  37. E. A. Hobbie, S. A. Macko, and M. Williams, “Correlations between Foliar δ15N and Nitrogen Concentrations May Indicate Plant-Mycorrhizal Interactions,” Oecologia 122, 273–283 (2000).

    Article  Google Scholar 

  38. R. M. Holmes, J. M. McClelland, D. M. Sigman, et al., “Measuring 15N-NH +4 in Marine, Estuarine and Fresh Waters: An Adaptation of the Ammonia Diffusion Method for Samples with Low Ammonium Concentrations,” Mar. Chem. 60, 235–243 (1998).

    Article  Google Scholar 

  39. P. Högberg, “15N Natural Abundance in Soil-Plant Systems,” New Phytol. 137, 179–203 (1997).

    Article  Google Scholar 

  40. P. Högberg and I. J. Alexander, “Roles of Root Symbioses in African Woodland and Forest: Evidence from 15N Abundance and Foliar Analysis,” J. Ecol 83, 217–224 (1995).

    Article  Google Scholar 

  41. P. Högberg, M. N. Högberg, M. E. Quist, et al., “Nitrogen Isotope Fractionation During Nitrogen Uptake by Ectomycorrhizal and Non-Mycorrhizal Pinus sylvestris, New Phytol. 142, 569–576 (1999).

    Article  Google Scholar 

  42. P. Högberg, L. Högbom, H. Schinkel, et al., “15N Abundance of Surface Soils, Roots and Mycorrhizas in Profiles of European Forest Soils,” Oecologia 108, 207–215 (1996).

    Google Scholar 

  43. P. Högberg, C. Johannisson, M. Högberg, and L. Högbom, “Measurements of Abundances of 15N and 13C as Tools in Retrospective Studies of N Balances and Water Stress in Forests: A Discussion of Preliminary Results,” Plant Soil 168/169, 125–133 (1995).

    Article  Google Scholar 

  44. C. Johannisson and P. Högberg, “15N Abundance of Soils and Plants along an Experimentally Induced Forest Nitrogen Supply Gradient,” Oecologia 97, 322–325 (1994).

    Google Scholar 

  45. R. E. Karamanos and D. A. Rennie, “Changes in Natural 15N Abundance Associated with Pedogenic Processes in Soil. II. Changes on Different Slope Positions,” Can. J. Soil Sci. 60, 365–372 (1980).

    Article  Google Scholar 

  46. S. J. Kerley and S. C. Jarvis, “The Use of Nitrogen-15 Natural Abundance in White Clover (Trifolium Repens L.) to Determine Nitrogen Fixation under Different Management Practices,” Biol. Fertil. Soils 29 437–440 (1999).

    Article  Google Scholar 

  47. S. J. Kerley and S. C. Jarvis, “Variation in 15N Natural Abundance of Soil, Humic Fractions and Plant Materials in a Disturbed and an Undisturbed Grassland,” Biol. Fertil. Soils 24, 147–152 (1997).

    Article  Google Scholar 

  48. K. Koba, N. Tokuchi, T. Yoshioka, et al., “Natural Abundance of Nitrogen-15 in a Forest Soil,” Soil Sci. Soc. Am. J. 62, 778–781 (1998).

    Article  Google Scholar 

  49. A. Kohzu, T. Yoshioka, T. Ando, et al., “Natural 13C and 15N Abundance of Field-Collected Fungi and Their Ecological Implications,” New Phytol. 144, 323–334 (1999).

    Article  Google Scholar 

  50. C. J. Koopmans, D. van Dam, A. Tietema, and J. M. Verstraten, “Natural 15N Abundance in Two Nitrogen Saturated Forest Ecosystems,” Oecologia 111, 470–480 (1997).

    Article  Google Scholar 

  51. M. G. Kramer, P. Sollins, R. S. Sletten, and P. K. Swart, “N Isotope Fractionation and Measures of Organic Matter Alteration During Decomposition,” Ecology 84, 2021–2025 (2003).

    Article  Google Scholar 

  52. E. S. Krull, E. A. Bestland, J. O. Skjemstad, and J. F. Parr, “Geochemistry (δ13C, δ15N, 13C NMR) and Residence Times (14C and OSL) of Soil Organic Matter from Red-Brown Earths of South Australia: Implications for Soil Genesis,” Geoderma 132, 344–360 (2006).

    Article  Google Scholar 

  53. J. D. Liao, T. W. Boutton, and J. D. Jastrow, “Organic Matter Turnover in Soil Physical Fractions Following Woody Plant Invasion of Grassland: Evidence from Natural 13C and 15N,” Soil Biol. Biochem. 38, 3197–3210 (2006).

    Article  Google Scholar 

  54. S. A. Macko and M. L. F. Estep, “Microbial Alteration of Stable Nitrogen and Carbon Isotopic Compositions of Organic Matter,” Org. Geochem. 6, 787–790 (1984).

    Article  Google Scholar 

  55. M. I. Makarov, B. Glaser, W. Zech, et al., “Nitrogen Dynamics in Alpine Ecosystems of the Northern Caucasus,” Plant Soil 256, 389–402 (2003).

    Article  Google Scholar 

  56. M. I. Makarov, T. I. Malysheva, J. H. C. Cornelissen, et al., “Consistent Patterns of 15N Distribution Through Soil Profiles in Diverse Alpine and Tundra Ecosystems,” Soil Biol. Biochem. 40, 1082–1089 (2008).

    Article  Google Scholar 

  57. A. Mariotti, J. C. Germon, P. Hubert, et al., “Experimental Determination of Nitrogen Kinetic Isotope Fractionation: Some Principles; Illustration for the Denitrification and Nitrification Processes,” Plant Soil 62, 413–430 (1981).

    Article  Google Scholar 

  58. A. Mariotti, D. Pierre, J. C. Vedy, and S. Bruckert, “The Abundance of Natural Nitrogen 15 in the Organic Matter of Soils Along an Altitudinal Gradient,” Catena 7, 293–300 (1980).

    Google Scholar 

  59. L. A. Martinelli, M. C. Piccolo, A. R. Townsend, et al., “Nitrogen Stable Isotopic Composition of Leaves and Soil: Tropical Versus Temperate Forests,” Biogeochemistry 46, 45–65 (1999).

    Google Scholar 

  60. A. Michelsen, C. Quarmby, D. Sleep, and S. Jonasson, “Vascular Plant 15N Natural Abundance in Heath and Forest Tundra Ecosystems Is Closely Correlated with Presence and Type of Mycorrhizal Fungi in Roots,” Oecologia 115, 406–418 (1998).

    Article  Google Scholar 

  61. A. Michelsen, I. K. Schmidt, S. Jonasson, et al., “Leaf 15N Abundance of Subarctic Plants Provides Field Evidence that Ericoid, Ectomycorrhizal and Non- and Arbuscular Mycorrhizal Species Access Different Sources of Nitrogen,” Oecologia 105, 53–63 (1996).

    Article  Google Scholar 

  62. A. E. Miller and W. D. Bowman, “Variation in Nitrogen-15 Natural Abundance and Nitrogen Uptake Traits among Co-Occurring Alpine Species: Do Species Partition by Nitrogen Form?,” Oecologia 130, 609–616 (2002).

    Article  Google Scholar 

  63. A. Morita, H. Takano, M. Oota, and T. Yoneyama, “Nitrification and Denitrification in an Acidic Soil of Tea (Camellia Sinensis L.) Field Estimated by δ15N Values of Leached Nitrogen from the Soil Columns Treated with Ammonium Nitrate in the Presence or Absence of a Nitrification Inhibitor and with Slow-Released Fertilizers,” Soil Sci. Plant Nutr. 48 585-593 (2002).

    Google Scholar 

  64. K. J. Nadelhoffer and B. Fry, “Controls of Natural Nitrogen-15 and Carbon-13 Abundances in Forest Soil Organic Matter,” Soil Sci. Soc. Am. J. 52, 1633–1640 (1988).

    Article  Google Scholar 

  65. K. J. Nadelhoffer and B. Fry, “Nitrogen Isotope Studies in Forest Ecosystems,” Stable Isotopes in Ecology and Environmental Sciences Ed. by K. Lajtha, R. H. Michener, (Blackwell Scientific, Boston, 1994), pp. 23–44.

    Google Scholar 

  66. K. Nadelhoffer, G. Shaver, B. Fry, et al., “15N Natural Abundances and N Use by Tundra Plants,” Oecologia 107, 386–394 (1996).

    Article  Google Scholar 

  67. C. Neill, M. C. Piccolo, P. A. Steudler, et al., “Nitrogen Dynamics in Soils of Forests and Active Pastures in the Western Brazilian Amazon Basin,” Soil Biol. Biochem. 27, 1167–1175 (1995).

    Article  Google Scholar 

  68. M. C. Piccolo, C. Neill, and C. C. Cerri, “Natural Abundance of 15N in Soils along Forest-to-Pasture Chronosequences in the Western Brazilian Amazon Basin,” Oecologia 99, 112–117 (1994).

    Article  Google Scholar 

  69. M. C. Piccolo, C. Neill, J. M. Melillo, et al., “15N Natural Abundance in Forest and Pasture Soils of the Brazilian Amazon Basin,” Plant Soil 182, 249–258 (1996).

    Google Scholar 

  70. S. A. Quideau, R. C. Graham, X. Feng, and O. A. Chadwick, “Natural Isotopic Distribution in Soil Surface Horizons Differentiated by Vegetation,” Soil Sci. Soc. Am. J. 67, 1544–1550 (2003).

    Article  Google Scholar 

  71. D. A. Rennie, E. A. Paul, and L. E. Johns, “Natural Nitrogen-15 Abundance of Soil and Plant Samples,” Can. J. Soil Sci. 56, 43–50 (1976).

    Article  Google Scholar 

  72. A. Riga, H. J. van Praag, and N. Brigode, “Rapport Isotopique Naturel de L’Azote Dans Quelques Sols Forestiers et Agricoles de Belgique Soumis a Divers Traitements Culturaux,” Geoderma 6, 213–222 (1971).

    Article  Google Scholar 

  73. G. P. Robertson and J. M. Tiedje, “Deforestation Alters Denitrification in a Lowland Tropical Rain Forest,” Nature 336, 756–759 (1988).

    Article  Google Scholar 

  74. D. Robinson, “δ15N as an Integrator of the Nitrogen Cycle,” Trends Ecol. Evol. 16, 153–162 (2001).

    Article  Google Scholar 

  75. E.-D. Schulze, F. S. Chapin III, and G. Gebauer, “Nitrogen Nutrition and Isotope Differences among Life Forms at the Northern Treeline of Alaska,” Oecologia 100, 406–412 (1994).

    Article  Google Scholar 

  76. G. Shearer, D. H. Kohl, and S.-H. Chien, “The Nitrogen-15 Abundance in a Wide Variety of Soils,” Soil Sci. Soc. Am. J. 42, 899–902 (1978).

    Article  Google Scholar 

  77. G. Shearer, D. H. Kohl, and B. Commoner, “The Precision of Determinations of the Natural Abundance of Nitrogen-15 in Soils, Fertilizers and Shelf Chemicals,” Soil Sci. 118, 308–316 (1974).

    Article  Google Scholar 

  78. G. Shearer and D. H. Kohl, “N2-Fixation in Field Settings: Estimation Based on Natural 15N Abundance,” Aust. J. Plant Physiol. 13, 699–756 (1986).

    Google Scholar 

  79. D. M. Sigman, M. A. Altabet, R. Michener, et al., “Natural Abundance-Level Measurement of the Nitrogen Isotopic Composition of Oceanic Nitrate: An Adaptation of the Ammonia Diffusion Method,” Mar. Chem. 57, 227–242 (1997).

    Article  Google Scholar 

  80. A. F. S. Taylor, L. Högbom, M. Högberg, et al., “Natural 15N Abundance in Fruit Bodies of Ectomycorrhizal Fungi from Boreal Forests,” New Phytol. 136, 713–720 (1997).

    Article  Google Scholar 

  81. F. C. P. Teixeira, F. Reinert, N. G. Rumjanek, and R. M. Boddey, “Quantification of the Contribution of Biological Nitrogen Fixation to Cratylia mollis Using the 15N Natural Abundance Technique in the Semi-Arid Caatinga Region of Brazil,” Soil Biol. Biochem. 38, 1989–1993 (2006).

    Article  Google Scholar 

  82. H. Tiessen, R. E. Karamanos, J. W. B. Stewart, and F. Selles, “Natural Nitrogen-15 Abundance as an Indicator of Soil Organic Matter Transformation in Native and Cultivated Soils,” Soil Sci. Soc. Am. J. 48, 312–315 (1984).

    Article  Google Scholar 

  83. G. L. Turner, R. R. Gault, L. Morthorpe, et al., “Differences in the Natural Abundance of 15N in the Extractable Mineral Nitrogen of Cropped and Fallowed Surface Soils,” Austr. J. Agric Research 38, 15–25 (1987).

    Article  Google Scholar 

  84. H. Vervaet, P. Boeckx, V. Unamuno, et al., “Can δ15N Profiles in Forest Soils Predict NO 3 Loss and Net N Mineralization Rates?,” Biol. Fertil. Soils 36, 143–150 (2002).

    Article  Google Scholar 

  85. M. Watzka, K. Buchgraber, and W. Wanek, “Natural 15N Abundance of Plants and Soils under Different Management Practices in a Montane Grassland,” Soil Biol. Biochem. 38, 1564–1576 (2006).

    Article  Google Scholar 

  86. H. Wallander, H. Göransson, and U. Rosengren, “Production, Standing Biomass and Natural Abundance of 15N and 13C in Ectomycorrhizal Mycelia Collected at Different Soil Depths in Two Forest Types,” Oecologia 139, 89–97 (2004).

    Article  Google Scholar 

  87. M. A. Williams, C. W. Rice, and C. E. Owensby, “Natural 15N Abundances in a Tallgrass Prairie Ecosystem Exposed to 8-Y of Elevated Atmospheric CO2,” Soil Biol. Biochem. 38, 409–412 (2006).

    Article  Google Scholar 

  88. T. Yoneyama, “Characterization of Natural 15N Abundance of Soils,” in Mass Spectrometry of Soils, Ed. by T. W. Boutton and S. I. Yamasaki (Marcel Dekker, Hong Kong-New York-Basel, 1996), pp. 205–223.

    Google Scholar 

  89. T. Yoneyama, K. Kouno, and J. Yazaki, “Variation of Natural 15N Abundance of Crops and Soil in Japan with Special Reference to the Effect of Soil Conditions and Fertilizer Application,” Soil Sci. Plant Nutr. 36, 667–675 (1990).

    Google Scholar 

  90. S.-I. Yun, H.-M. Ro, W.-J. Choi, and S. X. Chang, “Interactive Effects of N Fertilizer Source and Timing of Fertilization Leave Specific N Isotopic Signatures in Chinese Cabbage and Soil,” Soil Biol. Biochem. 38, 1682–1689 (2006).

    Article  Google Scholar 

  91. B. Zhao, M. Maeda, and Y. Ozaki, “Natural 15N and 13C Abundance in Andisols Influenced by Long-Term Fertilization Management in Japan,” Soil Sci. Plant Nutr. 48, 555–562 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Makarov.

Additional information

Original Russian Text © M.I. Makarov, 2009, published in Pochvovedenie, 2009, No. 12, pp. 1432–1445.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarov, M.I. The nitrogen isotopic composition in soils and plants: Its use in environmental studies (A Review). Eurasian Soil Sc. 42, 1335–1347 (2009). https://doi.org/10.1134/S1064229309120035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229309120035

Keywords

Navigation