Skip to main content
Log in

Local development of transmission and reflection of elementary field of stepwise excitation for orthotropic paramagnetic composite

  • Radio Phenomena in Solids and Plasma
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A problem of local subsurface probing of an orthotropic paramagnetic composite using a point source of stepwise external current that is parallel to a plane surface is formulated. Multidimensional Laplace–Carson transform is used to obtain transforms of the x (and y) Cartesian projection of the transmission and reflection characteristics. Analytical characteristics are determined at the origin. Expressions for the real and imaginary components of the x (and y) projections of characteristics are derived, the main properties are studied, and the computations are minimized at a predetermined accuracy using the Horner scheme. The relation of main stages and specific moments of the local development of transmission and reflection of elementary field of stepwise excitation is determined for orthotropic paramagnetic composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons (Nauka, Moscow, 1965; Springer-Verlag, New York, 1984).

    Book  Google Scholar 

  2. C. R. Simovski, J. Commun. Technol. Electron. 52, 953 (2007).

    Article  Google Scholar 

  3. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, Oxford, 1964; Nauka, Moscow, 1970).

    MATH  Google Scholar 

  4. G. S. Landsberg, Optics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  5. Yu. I. Sirotin and M. P. Shaskol’skaya, Principles of Crystal Physics (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  6. K. A. Vytovtov, J. Commun. Technol. Electron. 49, 559 (2004).

    Google Scholar 

  7. V. V. Fisanov, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 48, 537 (2005).

    Google Scholar 

  8. I. V. Antonets, L. N. Kotov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 53, 851 (2008).

    Article  Google Scholar 

  9. I. V. Antonets, L. N. Kotov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 54, 493 (2009).

    Article  Google Scholar 

  10. Yu. I. Bespyatykh and N. E. Kazantseva, J. Commun. Technol. Electron., 53, 143 (2008).

    Article  Google Scholar 

  11. D. E. Futerman, A. A. Fedii, I. V. Bychkov, V. D. Buchel’nikov, and V. G. Shavrov, J. Commun. Technol. Electron. 53, 460 (2008).

    Article  Google Scholar 

  12. Composite Materials: Reference Book, Ed. by D. M. Karpinos (Naukova Dumka, Kiev, 1985) [in Russian].

  13. M. L. Kerber, Polymeric Composite Materials. Structure. Properties. Technologies (Professiya, St. Petersburg, 2008) [in Russian].

    Google Scholar 

  14. Composite Materials: Reference Book, Ed. by V. V. Vasil’ev and Yu. M. Tarnopol’skii (Mashinostroenie, Moscow, 1990) [in Russian].

  15. R. M. White, Quantum Theory of Magnetism (Berlin, Springer-Verlag, 1983; Mir, Moscow, 1972).

    Google Scholar 

  16. G. S. Krinchik, Physics of Magnetic Phenomena (Mos. Gos. Univ., Moscow, 1985) [in Russian].

    Google Scholar 

  17. P. G. Burke, Handbook of Magnetic Phenomena (New York, Van Nostrand Reinhold Company, 1986; Mir, Moscow, 1991).

    Google Scholar 

  18. S. G. Mikhlin, Mathematical Physics: an Advanced Course (Lan’, St. Petersburg, 2002; North-Holland, Amsterdam, 1970).

    MATH  Google Scholar 

  19. B. Van der Pol and H. Bremmer, Operational Calculus Based on the Two-Sided Laplace Integral (Cambridge Univ. Press, London, 1955; Inostrannaya Literatura, Moscow, 1952).

    MATH  Google Scholar 

  20. V. A. Pashchenko and V. S. Khandetskii, Defektoskopiya, No. 6, 44 (2012).

    Google Scholar 

  21. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2: Partial Differential Equations (Interscience, New York, 1962; Mir, Moscow, 1964).

    MATH  Google Scholar 

  22. M. A. Lavrent’ev and B. V. Shabat, Methods of Complex Variable Theory (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  23. V. A. Pashchenko, in Proc. Int. Conf. on Mathematical Methods in Electromagnetic Theory, Kharkov, 2012 (Kharkov, 2012).

    Google Scholar 

  24. G. N. Watson, Treatise on the Theory of Bessel Functions (Cambridge Univ. Press, Cambridge, 1945; Inostrannaya Literatura, Moscow, 1949).

    Google Scholar 

  25. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1977) [in Russian].

    MATH  Google Scholar 

  26. V. O. Pashchenko, in Proc. Intern. Conf. on Parallel and Distributed Computing Systems, Kharkiv, 2013 (Kharkiv, 2013), p. 236

    Google Scholar 

  27. V. M. Fain, Quantum Radio Physics. Photons and Nonlinear Media (Sov. radio, Moscow, 1972) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Pashchenko.

Additional information

Original Russian Text © V.A. Pashchenko, 2017, published in Radiotekhnika i Elektronika, 2017, Vol. 62, No. 2, pp. 155–164.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashchenko, V.A. Local development of transmission and reflection of elementary field of stepwise excitation for orthotropic paramagnetic composite. J. Commun. Technol. Electron. 62, 156–165 (2017). https://doi.org/10.1134/S1064226917020097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226917020097

Navigation