Skip to main content
Log in

Electron Transport in Model Quasi-Two-Dimensional van der Waals Nanodevices

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Electron transport in a model nanodevice consisting of a combination of graphene, silicene, and molybdenum disulfide coupled by van der Waals bonds is studied within the framework of the density functional theory in the local-density approximation and method of nonequilibrium Green functions. The volt–ampere and dI/dV characteristics and transmission spectra of the nanodevices are calculated. It is revealed that the combination of silicene and molybdenum disulfide forms a new nanosystem with metallic properties manifesting themselves in its electron transport characteristics. It is shown that the graphene–MoS2–silicene hybrid nanostructure has rectifying properties due to the formation of the Schottky barrier, while steps of Coulomb origin appear in its volt–ampere characteristic at a positive voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington, DC, U. S.) 306, 666 (2004). https://doi.org/10.1126/science.1102896

    Article  ADS  Google Scholar 

  2. Y.-Ch. Lin, Properties of Synthetic Two-Dimensional Materials and Heterostructures (Springer Int., Switzerland, 2018). https://doi.org/10.1007/978-3-030-00332-6

    Book  Google Scholar 

  3. A. K. Geim and I. V. Grigorieva, Nature (London, U. K.) 499, 419 (2013). https://doi.org/10.1038/nature12385

    Article  Google Scholar 

  4. D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002). https://doi.org/10.1088/0953-8984/14/4/312

    Article  ADS  Google Scholar 

  5. J-W. Jiang, H. S. Park, and T. Rabczuk, J. Appl. Phys. 114, 064307 (2013). https://doi.org/10.1063/1.4818414

    Article  ADS  Google Scholar 

  6. S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P. A. Khomyakov, U. G. Vej-Hansen, M.-E. Lee, S. T. Chill, F. Rasmussen, G. Penazzi, F. Corsetti, et al., J. Phys.: Condens. Matter 32, 015901 (2020). https://doi.org/10.1088/1361-648X/ab4007

    Article  ADS  Google Scholar 

  7. D. M. Sergeyev, Tech. Phys. 65, 573 (2020). https://doi.org/10.1134/S1063784220040180

    Article  Google Scholar 

  8. D. M. Sergeyev, J. Nano-Electron. Phys. 10, 03018 (2018). https://doi.org/10.21272/jnep.10(3).03018

    Article  Google Scholar 

  9. X. Li, S. Wu, S. Zhou, and Z. Zhu, Nanoscale Res. Lett. 9, 110 (2014). https://doi.org/10.1186/1556-276X-9-110

    Article  ADS  Google Scholar 

  10. H. Grabert and M. H. Devoret, Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (Springer Science, New York, 1992). https://doi.org/10.1007/978-1-4757-2166-9

    Book  Google Scholar 

Download references

Funding

This work was carried out within the framework of a project of the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan, grant no. AP08052562.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Sergeyev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeyev, D.M., Duisenova, A.G. Electron Transport in Model Quasi-Two-Dimensional van der Waals Nanodevices. Tech. Phys. Lett. 47, 417–420 (2021). https://doi.org/10.1134/S1063785021040295

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785021040295

Keywords:

Navigation