Skip to main content
Log in

Numerical Simulation of Oscillations of Aerosol with a Low Dispersed Phase Concentration in a Closed Tube by the Continuum Mathematical Model

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Mechanics of multicomponent and multiphase media is a branch of fluid mechanics. Mathematical modeling of the dynamics of inhomogeneous media is of great importance because the experimental study of many of these processes is difficult. At the same time, many models are essentially nonlinear; for this reason, numerical methods are used to integrate such models. In a number of industrial energy technologies, to remove the dispersed component of an aerosol medium, gas–drop media are affected by acoustic fields. This is the reason for the interest in studying the dynamics of aerosols in acoustic fields, revealing the fundamental regularities of such flows, and also in developing mathematical models for the dynamics of aerosol media. Materials and methods. The paper presents a continuum mathematical model of aerosol dynamics. The model takes into account both intercomponent momentum exchange and intercomponent heat transfer. The system of equations of the mathematical model is solved by the finite difference method, and a nonlinear correction scheme is used to suppress numerical oscillations. Results. Oscillations of a gas suspension in a closed container at the resonance frequency are modeled. The distributions of physical parameters of the carrier medium and the dispersed component in the process of aerosol oscillations are obtained. Conclusions. Comparison of the results of numerical calculations with physical experiment data gives a satisfactory agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. R. I. Nigmatulin, Fundamentals of the Mechanics of Heterogeneous Media (Nauka, Moscow, 1978) [in Russian].

  2. L. E. Sternin, Two-Phase Mono- and Polydisperse Flows of Gas With Particles (Mashinostroenie, Moscow, 1980) [in Russian].

  3. A. G. Kutushev, Mathematical Modelling of Wave Processes in Aerodisperse and Powdery Media (Nedra, St. Petersburg, 2003) [in Russian].

  4. A. V. Fedorov, V. M. Fomin, and T. A. Khmel’, Wave Processes in Gas Suspensions of Metal Particles (Parallel’, Novosibirsk, 2015) [in Russian].

  5. A. Yu. Varaksin and M. V. Protasov, High Temp. 55 (6), 945 (2017). https://doi.org/10.1134/S0018151X17060177

    Article  Google Scholar 

  6. M. A. Pakhomov and V. I. Terekhov, Thermophys. Aeromech. 25 (6), 833 (2018). https://doi.org/10.1134/S0869864318060057

    Article  ADS  Google Scholar 

  7. A. H. Abed, S. E. Shcheklin, and V. M. Pakhaluev, Izv. Vyssh. Uchebn. Zaved., Yad. Energetika, No. 3, 16 (2019).

  8. I. M. Bayanov, Yu. F. Gortyshov, V. G. Tonkonog, and M. I. Tonkonog, Vestn. Kazansk. Gos. Tekh. Univ. im. A.N. Tupoleva, No. 4, 34 (2013).

  9. D. A. Gubaidullin, R. G. Zaripov, L. A. Tkachenko, and L. R. Shaidullin, High Temp. 55 (3), 469 (2017). https://doi.org/10.1134/S0018151X17030099

    Article  Google Scholar 

  10. S. A. Lisakov, A. I. Sidorenko, and E. V. Sypin, Yuzhno-Sib. Nauchn. Vestn., No. 4, 200 (2019).

  11. S. V. Nesterov, L. D. Akulenko, and V. G. Baidulov, Dokl. Phys. 61 (9), 467 (2016). https://doi.org/10.1134/S1028335816090093

    Article  ADS  Google Scholar 

  12. I. A. Fedorchenko and A. V. Fedorov, J. Eng. Phys. Thermophys. 86 (4), 731 (2013). https://doi.org/10.1007/s10891-013-0889-9

    Article  Google Scholar 

  13. M. Dar Ramdane and A. Khorsi, Thermophys. Aeromech. 22 (3), 313 (2015). https://doi.org/10.1134/S0869864315030051

    Article  ADS  Google Scholar 

  14. M. A. Ferreira, SEMA SIMAI Springer Series 25, 69 (2021). https://doi.org/10.1007/978-3-030-67104-4_3

  15. S. N. D’yakonov, B. V. Ryumshin, and L. V. Kotlyarova, Tech. Phys. 56 (10), 1379 (2011). https://doi.org/10.1134/S1063784211100070

    Article  Google Scholar 

  16. L. K. Ingel’, Tech. Phys. 57 (11), 1585 (2012). https://doi.org/10.1134/S1063784212110126

    Article  Google Scholar 

  17. A. G. Laptev and E. A. Laptev, Zh. Tekh. Fiz. 92 (9), 1319 (2022).

    Google Scholar 

  18. V. V. Strokova, E. M. Ishmukhametov, A. Yu. Esina, I. Yu. Markova, E. N. Gubareva, A. V. Abzalilova, and N. A. Shapovalov, Vestn. Tekhnol. Univ. 24 (12), 5 (2021).

    Google Scholar 

  19. D. A. Nazarov, D. S. Sinitsyn, N. A. Mosunova, and A. A. Sorokin, Therm. Eng. 69 (9), 683 (2022). https://doi.org/10.1134/S0040601522090026

    Article  Google Scholar 

  20. I. V. Golubkina and A. N. Osiptsov, Fluid Dyn. 57 (3), 261 (2022). https://doi.org/10.1134/S0015462822030065

    Article  ADS  MathSciNet  Google Scholar 

  21. T. R. Amanbaev, High Temp. 58 (2), 255 (2020). https://doi.org/10.1134/S0018151X20020029

    Article  Google Scholar 

  22. N. N. Simakov, Theor. Found. Chem. Eng. 56 (3), 339 (2022). https://doi.org/10.1134/S0040579522030137

    Article  Google Scholar 

  23. D. V. Sadin, Nauchno-Tekh. Ved. S.-Peterb. Gos. Politekh. Univ. Fiz.-Mat. Nauki, No. 4, 40 (2021).

  24. H. Watanabe, A. Matsuo, A. Chinnayya, K. Matsuoka, A. Kawasaki, and J. Kasahara, J. Fluid Mech. 887, A4 (2020). https://doi.org/10.1017/jfm.2019.1018

    Article  ADS  Google Scholar 

  25. C. Liu, Y. Zhao, Z. Tian, and H. Zhou, Aerosol Air Qual. Res. 21 (4), 1 (2021). https://doi.org/10.4209/aaqr.2020.06.0361

    Article  Google Scholar 

  26. A. L. Tukmakov and D. A. Tukmakov, High Temp. 55 (4), 491 (2017). https://doi.org/10.1134/S0018151X17030221

    Article  Google Scholar 

  27. D. A. Tukmakov and N. A. Tukmakova, J. Eng. Phys. Thermophys. 91 (1), 207 (2018). https://doi.org/10.1007/s10891-018-1737-8

    Article  Google Scholar 

  28. A.L. Tukmakov, D.A. Tukmakov, Journal of Engineering Physics and Thermophysics 91, 1141 (2018). https://doi.org/10.1007/s10891-018-1842-8

  29. D. A. Tukmakov, J. Eng. Phys. Thermophys. 93 (2), 291 (2020). https://doi.org/10.1007/s10891-020-02120-9

    Article  Google Scholar 

  30. A. L. Tukmakov and D. A. Tukmakov, Izv. Saratovsk. Univ. Nov. Ser. Ser.: Mat. Mekh. Inf. 22 (1), 90 (2022). https://doi.org/10.18500/1816-9791-2022-22-1-90-102

    Article  MathSciNet  Google Scholar 

  31. C. A. Fletcher, Computation Techniques for Fluid Dynamics (Springer, Berlin, 1988).

    Book  Google Scholar 

  32. A. L. Tukmakov, J. Eng. Phys. Thermophys. 87 (1), 38 (2014). https://doi.org/10.1007/s10891-014-0982-8

    Article  Google Scholar 

  33. I. F. Muzafarov and S. V. Utyuzhnikov, Mat. Model., No. 9, 74 (1993).

  34. G. S. Gorelik, Vibrations and Waves (Fizmatlit, Moscow, 1959) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Tukmakov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tukmakov, D.A. Numerical Simulation of Oscillations of Aerosol with a Low Dispersed Phase Concentration in a Closed Tube by the Continuum Mathematical Model. Tech. Phys. 67, 764–770 (2022). https://doi.org/10.1134/S1063784222110032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222110032

Keywords:

Navigation