Skip to main content
Log in

Small-Size Cherenkov Telescope with an SiPM-Based Camera: Full-Particle Modeling of the Cosmic γ-Ray Source Detection Threshold

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Full-particle massive modeling of physical processes in the Earth’s atmosphere leading to generation of Cherenkov radiation in γ-ray- and proton-induced extensive air showers (EASs), as well as Monte Carlo modeling of photon transport in small-size Cherenkov telescope and signal registration with a camera based on OnSemi MicroFJ type semiconductor photomultiplier (SiPM) detectors have been performed. Calculations have been carried out for primaries with energies in the 0.3–30 TeV range and a Cherenkov telescope with an ≃10 m2 mirror similar to that employed at the TAIGA observatory. It is shown that, even with strict selection criteria ensuring high-quality EAS images, the threshold detection energy of the SiPM-based camera would not exceed 0.8 TeV, which is about twice as low as the detection threshold (≃1.5 TeV) of a small-size TAIGA-IACT telescope camera based on vacuum photomultipliers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Notes

  1. It should be noted that the inclusion of this doublet in the present modeling is not as important, since it is assumed that the upgraded camera will operate with filters and the long-wavelength boundary of observations would be at about 600 nm. Thus, the given spectral detail is only taken into account for completeness of the model and for future investigations involving detection regimes with filters transmitting at wavelengths above 600 nm.

  2. In view of limited computing resources, modeling of various parts of the telescope tract has to be carried out in parallel (simultaneously). This circumstance did not allow us to try all the most appropriate and justified values of parameters of the proposed camera at once so as to ensure the best solution to the formulated problem. Instead, we had to use estimations based on the data of other research groups reporting on the corresponding issues.

  3. The sign of averaging is omitted. Here and below, the array-average value is used unless it is indicated that a particular pixel map (or array) is implied and pixel indices are given.

  4. The value of 2θEAS ≃ 2.60 is a typical angular size of EAS [51]. The total exposure of a region in the focal plane limited by angle θEAS around the brightest pixel is above 80% of the total exposure of the camera to EAS Cherenkov radiation in the entire energy range.

  5. Strictly speaking, all the introduced indices are necessary for single-valued correspondence of the physical characteristics and situations (EAS type, optical filters, etc.). For the sake of brevity in data presentation (e.g., at the axes of plots), these indices (as well as the symbol of averaging) will be omitted where this cannot lead to ambiguity.

  6. The currently proposed variant admits the possibility that the “dead” time of the system of primary data processing could last up to ≃ 500 μs—i.e., even in view of technical limitations, the telescope total count rate should not exceed ≃2 kHz, not to mention restrictions imposed subsequently by the storage and detailed processing of obtained images

  7. The currently proposed variant stipulates testing of one to three upgraded SiPM clusters. Therefore, the conditions of trigger operation can be refined in the course of project realization in the direction of some softening as compared to those planned for the fully upgraded camera.

  8. For energies close to the threshold, this is equivalent to using an approximate expression for the effective area Seff (E) ≃ 2πrP(E, r)∆r in formula (9), where r = 120 m and ∆r ∼ 100 m is the typical width of rP(r) distribution (as can be seen from an example of P(r) distribution in [34]). It should be noted that, since r = 120 m is close to some average value of the impact parameter of an EAS induced by primary particles with near-threshold energies, this approximation provides quite an adequate estimation of the detection area at the corresponding energies.

  9. This is quite expectable, as it already follows from the comparison of probabilities \(P_{{{\text{opt}}}}^{S}\)(E) and \(P_{{{\text{ZWB}}}}^{S}\)(E) (see Fig. 6), which also differ rather weakly.

  10. The possibility of using a two-threshold algorithm of image cleaning will be discussed in subsequent papers.

  11. It should be noted that, since model calculations [17] employed approximate semianalytical models of the formation and registration of EAS Cherenkov radiation, these calculations made it possible to estimate only the level of the average signal \(\sigma _{F}^{N}\), and did not allow to determine its root-mean-square deviation \(\sigma _{F}^{N}\) from a series of events. In this respect, the estimated signal levels calculated in the present work, as well as the results obtained in [17], provide rather a general, but still quite complete notion of the possibilities of EAS Cherenkov radiation observation using the TAIGA-IACT telescope with an upgraded SiPM-based camera.

REFERENCES

  1. C. C. Hsu, D. Fink, J. Hose, R. Mirzoyan, O. Reimann, M. Shayduk, and M. Teshima, Nucl. Instrum. Methods Phys. Res., Sect. A 610, 267 (2009).

    Google Scholar 

  2. E. Gazda, T. Nguyen, N. Otte, and G. Richards, J. Instrum. 11, 11015 (2016).

    Article  Google Scholar 

  3. G. Giavitto, T. Ashton, A. Balzer, D. Berge, F. Brun, Th. Chaminade, E. Delagnes, G. Fontaine, M. Füßling, B. Giebels, J.-F. Glicenstein, T. Gräaber, J. Hinton, A. Jahnke, S. Klepser, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 876, 35 (2017).

    Google Scholar 

  4. B. S. Acharya et al. (CTA Consortium Collab.), ArXive:1709.07997 (2017). https://doi.org/10.48550/arXiv.1709.07997

  5. A. M. Bykov, F. A. Aharonian, A. M. Krassilchtchikov, E. E. Kholupenko, P. N. Aruev, D. A. Baiko, A.  A.  Bogdanov, G. I. Vasilyev, V. V. Zabrodskii, S.  V.  Troitsky, Yu. V. Tuboltsev, A. A. Kozhberov, K. P. Levenfish, and Yu. V. Chichagov, Tech. Phys. 62 (6), 819 (2017). https://doi.org/10.1134/S106378421706007X

    Article  Google Scholar 

  6. H. Anderhub, M. Backes, A. Biland, V. Boccone, I. Braun, T. Bretz, J. Buß, F. Cadoux, V. Commichau, L. Djambazov, D. Dorner, S. Einecke, D. Eisenacher, A. Gendotti, et al., J. Instrum. 8, 06008 (2013).

    Article  Google Scholar 

  7. G. Ambrosi, M. Ambrosio, C. Aramo, E. Bissaldi, A. Boiano, A. Bonavolontá, C. de Lisio, L. Di Venere, E. Fiandrini, N. Giglietto, F. Giordano, M. Ionica, V. Masone, R. Paoletti, V. Postolache, et al., Nucl. Part. Phys. Proc. 291–293, 55 (2017).

    Article  Google Scholar 

  8. M. Mallamaci, B. Baibussinov, G. Busetto, D. Corti, A. De Angelis, F. Di Pierro, M. Doro, L. Lessio, M.  Mariotti, R. Rando, E. Prandini, P. Vallania, C. F. Vigorito, and CTA LST Project, Nucl. Instrum. Methods Phys. Res., Sect. A 936, 231 (2019).

    Google Scholar 

  9. G. Ambrosi, M. Ambrosio, C. Aramo, B. Bertucci, E. Bissaldi, M. Bitossi, A. Boiano, C. Bonavolontá, M. Caprai, L. Consiglio, L. Di Venere, E. Fiandrini, N. Giglietto, F. Giordano, M. Ionica, et al., Nucl. Part. Phys. Proc. 306–308, 37 (2019).

    Article  Google Scholar 

  10. A. S. Lombardi, O. Catalano, S. Scuderi, L. A. Antonelli, G. Pareschi, E. Antolini, L. Arrabito, G. Bellassai, K. Bernlöhr, J. Bigongiari, B. Biondo, G. Bonanno, G. Bonnoli, G. M. Böttcher, J. Bregeon, et al., Astron. Astrophys. 634, A22 (2020).

    Article  Google Scholar 

  11. C. B. Adams, R. Alfaro, G. Ambrosi, M. Ambrosio, C. Aramo, T. Arlen, P. I. Batista, W. Benbow, B. Bertucci, E. Bissaldi, J. Biteau, M. Bitossi, A. Boiano, C. Bonavolontá, R. Bose, et al., Astron. Astrophys. 128, 102562 (2021).

  12. M. L. Knoetig, A. Biland, T. Bretz, J. Buss, D. Dorner, S. Einecke, D. Eisenacher, D. Hildebrand, T. Krahenbuhl, W. Lustermann, K. Mannheim, K. Meier, D. Neise, A. K. Overkemping, A. Paravac, et al., Proc. 33rd Int. Cosmic Ray Conf., 2013, Vol. 33, p. 1132.

  13. E. E. Kholupenko, P. N. Aruev, D. A. Baiko, A. A. Bogdanov, G. I. Vasilyev, V. V. Zabrodskii, A. M. Krasil’shchikov, Y. V. Tuboltsev, and Y. V. Chichagov, Phys. At. Nucl. 79 (13), 1542 (2016). https://doi.org/10.1134/S1063778816130020

    Article  Google Scholar 

  14. L. A. Kuzmichev, I. I. Astapov, P. A. Bezyazeekov, V. Boreyko, A. N. Borodin, N. M. Budnev, R. Wischnewski, A. Y. Garmash, A. R. Gafarov, N. V. Gorbunov, V. M. Grebenyuk, O. A. Gress, T. I. Gress, A. A. Grinyuk, O. G. Grishin, et al., Phys. At. Nucl. 81 (4), 497 (2018). https://doi.org/10.1134/S1063778818040105

    Article  Google Scholar 

  15. ON Semiconductor. J-Series SiPM Sensors. Silicon Photomultipliers (SiPM), High PDE and Timing Resolution Sensors in a TSV Package (2017). https://www.onsemi.com/pub/Collateral/MICROJ-SERIESD.pdf

  16. L.A. Kuzmichev, Personal communication, 2020.

  17. E. E. Kholupenko, A. M. Krassilchtchikov, D. V. Badmaev, A. A.Bogdanov, Yu. V. Tuboltsev, Yu. V. Chichagov, A. S. Antonov, D. O. Kuleshov, and E. M. Khil’kevich, Tech. Phys. 65 (6), 886 (2020).

    Article  Google Scholar 

  18. C. Leinert, S. Bowyer, L. K. Haikala, M. S. Hanner, M.G. Hauser, A.-C. Levasseur-Regourd, I. Mann, K. Mattila, W. T. Reach, W. Schlosser, H. J. Staude, G. N. Toller, J. L. Weiland, J. L. Weinberg, and A. N. Witt, Astron. Astrophys. Suppl. Ser. 127, 1 (1998).

    Article  ADS  Google Scholar 

  19. C. R. Benn and S. L. Ellison, New Astron. Rev. 42 (6–8), 503 (1998).

    Article  ADS  Google Scholar 

  20. M. Chantell, C. W. Akerlof, J. Buckley, D. A. Carter-Lewis, M. F. Cawley, V. Connaughton, D. J. Fegan, P. Fleury, J. Gaidos, A. M. Hillas, R. C. Lamb, E. Pare, H. J. Rose, A. C. Rovero, X. Sarazin, et al., Proc. 24th Int. Cosmic Ray Conf., 1995, Vol. 2, p. 544.

  21. M. C. Chantell, X. Sarazin, P. Fleury, K. Harris, A. Kerrick, E. Paré, M. Punch, M. Urban, G. Vacanti, and T. C. Weekes, Proc. 24th Int. Cosmic Ray Conf., 1995, Vol. 2, p. 560.

  22. D. Guberman, J. Cortina, R. García, J. Herrera, M. Manganaro, A. Moralejo, J. Rico, M. Will, and MAGIC Collab., Proc. 34th Int. Cosmic Ray Conf. (ICRC2015), 2015, Vol. 34, p. 1237.

  23. M. L. Ahnen, S. Ansoldi, L. A. Antonelli, C. Arcaro, A. Babić, B. Banerjee, P. Bangale, U. Barres de Almeida, J. A. Barrio, J. Becerra González, W. Bednarek, E. Bernardini, A. Berti, W. Bhattacharyya, B. Biasuzzi, et al., Astropart. Phys. 94, 29 (2017).

    Article  ADS  Google Scholar 

  24. S. Griffin and VERITAS Collab., Proc. 34th Int. Cosmic Ray Conf. (ICRC2015), 2015, Vol. 34, p. 989.

  25. A. M. Hillas, Proc. 19th Int. Cosmic Ray Conf., 1985, Vol. 3, p. 445.

  26. Y. L. Zyskin, B. M. Vladimirsky, Y. I. Neshpor, A. A. Stepanov, V. P. Fomin, and V. G. Shitov, Proc. 20th Int. Cosmic Ray Conf., 1987, Vol. 2, p. 342.

  27. Y. L. Neshpor, N. N. Chalenko, A. A. Stepanian, O.  R.  Kalekin, N. A. Jogolev, V. P. Fomin, and V. G. Shitov, Astron. Rep. 45, 249 (2001).

    Article  ADS  Google Scholar 

  28. M. A. Rahman, P. N. Bhat, B. S. Acharya, V. R. Chitnis, P. Majumdar, and P. R. Vishwanath, Exp. Astron. 11, 113 (2001).

    Article  ADS  Google Scholar 

  29. E. E. Kholupenko, A. M. Bykov, F. A. Aharonyan, G. I. Vasiliev, A. M. Krassilchtchikov, P. N. Aruev, V. V. Zabrodskii, and A. V. Nikolaev, Tech. Phys. 63, 1603 (2018).

    Article  Google Scholar 

  30. D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, and T. Thouw, CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers (Forschungszentrum, Karlsruhe, 1998).

    Google Scholar 

  31. E. Thébault, Ch. C. Finlay, C. D. Beggan, P. Alken, J. Aubert, O. Barrois, F. Bertrand, T. Bondar, A. Boness, L. Brocco, E. Canet, A. Chambodut, A. Chulliat, P. Coïsson, F. Civet, et al., Earth, Planets, Space 67, 79 (2015).

    Article  ADS  Google Scholar 

  32. R. V. Vasiliev, O. A. Gress, E. E. Korosteleva, L. A. Kuz’michev, B. K. Lubsandorzhiev, A. I. Panfilov, Yu. V. Parfenov, L. V. Pan’kov, V. V. Prosin, B.  A.  M. Shaibonov, Ch. Spiering, T. Schmidt, D. V. Chernov, and I. V. Yashin, Instrum. Exp. Tech. 52 (2), 166 (2009). https://doi.org/10.1134/S0020441209020043

    Article  Google Scholar 

  33. F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Ontar Corp., North Andover, 1996).

    Google Scholar 

  34. C. Köhler, G. Hermann, W. Hofmann, and A. Konopelko, and A. Plyasheshnikov, Astropart. Phys. 6 (1), 77 (1996).

    Article  ADS  Google Scholar 

  35. G. I. Vasil’ev, E. E. Kholupenko, D.A. Baiko, A. M. Bykov, A. M. Krasil’shchikov, and G. G. Pavlov, Nauchno-Tekh. Ved. S.-Peterb. Gos. Politekh. Univ., Fiz.-Mat. Nauki 134 (4), 79 (2011).

    Google Scholar 

  36. G. I. Vasil’ev, E. E. Kholupenko, S. N. Yablokov, D. A. Baiko, A. M. Bykov, A. M. Krasil’shchikov, and G. G. Pavlov, Nauchno-Tekh. Ved. S.-Peterb. Gos. Politekh. Univ., Fiz.-Mat. Nauki 153 (3), 191 (2012).

    Google Scholar 

  37. GEANT4. A Simulation Toolkit. https://geant4.web.cern.ch/node/1

  38. J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand, B. R. Beck, A. G. Bogdanov, D. Brandt, J. M. C. Brown, H. Burkhardt, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 835, 186 (2016).

    Google Scholar 

  39. D. Heck, Personal communication, 2020.

  40. A. V. Mikhalev, I. V, Medvedeva, A. B. Beletsky, and E. S. Kazimirovsky, J. Atmos. Sol.-Terr. Phys. 63, 865 (2001).

    Article  ADS  Google Scholar 

  41. A. V. Mikhalev and I. V. Medvedeva, Opt. Atmos. Okeana 15, 993 (2002).

    Google Scholar 

  42. R. Mirzoyan and E. Lorenz, Measurement of the night sky light background at La Palma, Internal Report of the HEGRA Collaboration, MPI-PhE/94-35 (1994).

  43. N. Lubsandorzhiev, I. Astapov, P. Bezyazeekov, V. Boreyko, A. Borodin, M. Brueckner, N. Budnev, A. Chiavassa, A. Dyachok, O. Fedorov, A. Gafarov, A. Garmash, N. Gorbunov, V. Grebenyuk, O. Gress, et al., Proc. 35th Int. Cosmic Ray Conf. (ICRC2017), 2017, Vol. 301, p. 757.

  44. D. Berge, Dissertation (Humboldt-Universitat, Berlin, 2002).

  45. M. Sc. Tulun Ergin, Dissertation (Humboldt-Universitat, Berlin, 2005).

  46. R. Holzlöhner, J. Kosmalski, and S. Guisard, Proc. SPIE 10700, 107000I (2018). https://doi.org/10.1117/12.2313314

  47. E. Roache, R. Irvin, J. S. Perkins, K. Harris, A. Falcone, J. Finley, and T. Weeks, Proc. 30th Int. Cosmic Ray Conf., 2008, Vol. 3, p. 1397.

  48. V. A. Zverev, E. V. Krivopustova, and T. V. Tochilina, Optical Materials, Part 2: Tutorial for Designers of Optical Systems (St. Petersburg Nat. Res. Univ. Inform. Technol., Mech., Opt., St. Petersburg, 2013) [in Russian].

  49. F. Hénault, P.-O. Petrucci, L. Jocou, B. Khélifi, P. Manigot, S. Hormigos, J. Knödlseder, J.-F. Olive, P. Jean, and M. Punch, Proc. SPIE 8834, 883405 (2013). https://doi.org/10.1117/12.2024049

  50. A. S. Antonov, A. A. Bogdanov, A. M. Krasil’shchikov, and E. E. Kholupenko, Zh. Tekh. Fiz. 91 (11), 1601 (2021). https://www.elibrary.ru/item.asp?id=46638316

    Google Scholar 

  51. C. Berat, S. Bottai, D. De Marco, S. Moreggia, D. Naumov, M. Pallavicini, R. Pesce, A. Petrolini, A. Stutz, E. Taddei, and A. Thea, Astropart. Phys. 33, 221 (2010).

    Article  ADS  Google Scholar 

  52. HEGRA Collab., A. Konopelko, M. Hemberger, F. Aharonian, A. Daum, W. Hofmann, C. Köhler, H. Krawczynski, H. J. Völk, A. Akhperjanian, J. Barrio, K. Bernlöhr, H. Bojahr, J. Contreras, J. Cortina, et al., Astropart. Phys. 10 (4), 275 (1999).

    Article  ADS  Google Scholar 

  53. S. Schlenker, Dissertation (Humboldt-Universitat, Berlin, 2001).

  54. S. Funk, Dissertation (Humboldt-Universitat, Berlin, 2002).

  55. F. Aharonian, A. Akhperjanian, M. Beilicke, K. Bernlöhr, H.G. Börst, H. Bojahr, O, Bolz, T. Coarasa, J. L. Contreras, J. Cortina, S. Denninghoff, M. V. Fonseca, M. Girma, N. Götting, G. Heinzelmann, et al., Astrophys. J. 614 (2), 897 (2004).

    Article  ADS  Google Scholar 

  56. Description of the Cosmic Gamma-Source Crab in the Online Catalog TeVCat. tevcat.uchicago.edu. http://tevcat.uchicago.edu/?mode=1&showsrc=74

  57. F. Aharonian, A. Akhperjanian, M. Beilicke, K. Bernlöhr, H. G. Börst, H. Bojahr, O. Bolz, T. Coarasa, J. L. Contreras, J. Cortina, S. Denninghoff, V. Fonseca, M. Girma, N. Götting, G. Heinzelmann, et al., Astron. Astrophys. 421, 529 (2004).

    Article  ADS  Google Scholar 

  58. S. Funk, G. Hermann, J. Hinton, D. Berge, K. Bernlöhr, W. Hofmann, P. Nayman, F. Toussenel, and P. Vincent, Astropart. Phys. 22 (3–4), 285 (2004).

    Article  ADS  Google Scholar 

  59. A. E. Chudakov, V. L. Dadykin, V. I. Zatsepin, and N. M. Nesterova, Proc. 8th Int. Cosmic Ray Conf., 1963, Vol. 4, p. 199.

  60. J. V. Jelley and N. A. Porter, Q. J. R. Astron. Soc. 4, 275 (1963).

    Google Scholar 

  61. W. N. Charman, J. H. Fruin, J. V. Jelley, D. J. Fegan, D. M. Jennings, E. P. O’Mongain, N. A. Porter, and G. M. White, Proc. 11th Int. Cosmic Ray Conf., 1969, Vol. 1, p. 59.

  62. K. Greisen, Progress in Cosmic Ray Physics (North-Holland, Amsterdam, 1956), Vol. 3.

    Google Scholar 

  63. J. Linsley, Proc. 27th Int. Cosmic Ray Conf., 2001, Vol. 2, p. 502.

  64. H. J. Völk and K. Bernlöhr, Exp. Astron. 25 (1–3), 173 (2009).

    Article  ADS  Google Scholar 

  65. A. A. Bogdanov, E. E. Kholupenko, Yu. V. Tuboltsev, and Yu. V. Chichagov, Latv. J. Phys. Tech. Sci. 57 (1–2), 13 (2020).

    Google Scholar 

  66. V. L. Manomenova, E. B. Rudneva, A. É. Voloshin, L. V. Soboleva, A. B. Vasil’ev, and B. V. McHedlishvili, Crystallogr. Rep. 50 (5), 877 (2005).

    Article  ADS  Google Scholar 

  67. M. A. Zabud’ko, Specification: UV Filter SP 305 (LLC Fotooptik, 2016) [in Russian].

    Google Scholar 

  68. O. R. Kalekin, Y. I. Neshpor, A. A. Stepanyan, Y.  L.  Zyskin, A. P. Kornienko, B. M. Vladimirskii, V. P. Fomin, and V. G. Shitov, Astron. Lett. 21, 163 (1995).

    ADS  Google Scholar 

  69. Photonis, Imaging Sensors. XP1911 Photomultiplier Tubes. Product Specification (1999).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The results of this investigation can be used, in particular, for upgrading the unique scientific facility MGU–IGU Astrophysical Complex in the framework of assignment no. 13.UNU.21.0007 between the Ministry of Education and Science of the Russian Federation and Irkutsk State University.

Funding

The work was supported by the Russian Science Foundation, project no. 19-72-20045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Kholupenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kholupenko, E.E., Badmaev, D.V., Antonov, A.S. et al. Small-Size Cherenkov Telescope with an SiPM-Based Camera: Full-Particle Modeling of the Cosmic γ-Ray Source Detection Threshold. Tech. Phys. 67, 80–103 (2022). https://doi.org/10.1134/S106378422201008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378422201008X

Keywords:

Navigation