Skip to main content
Log in

Changes in Nitric Oxide and Copper Content in Rat Liver and Hippocampus after Brain Ischemia Modeling

  • RADIOSPECTROMETRIC METHODS IN SCIENCES OF LIFE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Results of analysis of nitric oxide and copper content in rat liver and hippocampus after brain ischemia modeling are provided. The studies are carried out using the electron paramagnetic resonance spectroscopy method with spin traps. It was shown that, the day after brain ischemia modeling, nitric oxide content in hippocampus decreases on average by 50% and a tendency toward its decrease was observed in liver tissues. Two days after brain ischemia modeling, nitric oxide content in the brain recovered and a significant increase by 46% against control indices was observed in the liver. On the second day of the postischemic period, the copper content, which is associated with superoxide dismutase content, increased on average by 2.5-fold in the liver. No significant changes in copper content was found in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. H. Kumar and D.-K. Choi, Mediators Inflammation 2015, 584758 (2015). https://doi.org/10.1155/2015/584758

  2. T. A. Voronina, Rev. Clin. Pharmacol. Drug Ther. 14 (1), 63 (2016).

    Article  Google Scholar 

  3. E. H. Lo, T. Dalkara, and M. A. Moskowitz, Nat. Rev. Neurosci. 4 (5), 399 (2003).

    Article  Google Scholar 

  4. U. Dirnagl, C. Iadecola, and M. A. Moskowitz, Trends Neurosci. 22 (9), 391 (1999).

    Article  Google Scholar 

  5. V. E. Novikov and N. P. Katunina, Rev. Clin. Pharmacol. Drug Ther. 1 (2), 73 (2002).

    Google Scholar 

  6. G. A. Donnan, M. Fisher, M. Macieod, and S. M. Davis, Lancet 371, 1612 (2008).

    Article  Google Scholar 

  7. J. C. LaManna, J. C. Chavez, and P. Pichiule, J. Exp. Biol. 207, 3163 (2004). https://doi.org/10.1242/jeb.00976

    Article  Google Scholar 

  8. K. P. Doyle, R. P. Simon, and M. P. Stenzel-Poore, Neurophrmacology 55, 310 (2008).

    Article  Google Scholar 

  9. E. B. Manukhina, I. Y. Malyshev, B. V. Smirin, S. Y. Mashina, V. A. Saltykova, and A. F. Vanin, Nitric Oxide 3 (5), 393 (1999).

    Article  Google Scholar 

  10. J. R. Steinert, T. Chernova, and I. D. Forsythe, Neuroscientist 16 (4), 435 (2010). https://doi.org/10.1177/1073858410366481

    Article  Google Scholar 

  11. A. F. Vanin, Nitric Oxide 54, 15 (2016).

    Article  Google Scholar 

  12. P. Pacher, J. S. Beckman, and L. Liaudet, Physiol. Rev. 87, 315 (2007).

    Article  Google Scholar 

  13. V. P. Reutov, V. E. Okhotin, A. V. Shuklin, E. G. Sorokina, N. S. Kositsyn, and V. N. Gurin, Usp. Fiziol. Nauk 38 (4), 39 (2007).

    Google Scholar 

  14. Kh. L. Gainutdinov, S. A. Gavrilova, V. S. Iyudin, A.  V.  Golubeva, M. P. Davydova, G. G. Jafarova, V. V. Andrianov, and V. B. Koshelev, Appl. Magn. Reson. 40 (3), 267 (2011).

    Article  Google Scholar 

  15. E. B. Manukhina, H. F. Downey, and R. T. Mallet, Exp. Biol. Med. 231, 343 (2006).

    Article  Google Scholar 

  16. N. A. Terpolilli, M. A. Moskowitz, and N. Plesnila, J. Cereb. Blood Flow Metab. 32 (7), 1332 (2012).

    Article  Google Scholar 

  17. A. F. Vanin, A. Huisman, and E. E. Van Faassen, Methods Enzymol. 359, 27 (2003).

    Article  Google Scholar 

  18. B. G. Hill, B. P. Dranka, S. M. Bailey, J. R. Lancaster, and V. M. Darley-Usmar, J. Biol. Chem. 285, 19699 (2010).

    Article  Google Scholar 

  19. V. Calabrese, C. Cornelius, E. Rizzarelli, J. B. Owen, A. T. Dinkova-Kostova, and D. A. Butterfield, Antioxid. Redox Signaling 11, 2717 (2009).

    Article  Google Scholar 

  20. A. I. Ismailova, O. I. Gnezdilov, L. N. Muranova, A. A. Obynochny, V. V. Andrianov, Kh. L. Gainutdinov, A. G. Nasyrova, R. R. Nigmatullina, F. F. Rahmatullina, and A. L. Zefirov, Appl. Magn. Reson. 28, 421 (2005).

    Article  Google Scholar 

  21. N. Hogg, Free Radical Biol. Med. 49 (2), 122 (2010). https://doi.org/10.1016/j.freeradbiomed.2010.03.009

    Article  Google Scholar 

  22. A. F. Vanin, P. I. Mordvintcev, and A. L. Kleshchev, Stud. Biophys. 102, 135 (1984).

    Google Scholar 

  23. Kh. L. Gainutdinov, V. V. Andrianov, V. S. Iyudin, S. V. Yurtaeva, G. G. Jafarova, R. I. Faisullina, and F. G. Sitdikov, Biophysics 58 (2), 203 (2013). https://doi.org/10.1134/S0006350913020073

    Article  Google Scholar 

  24. A. L. Kleschyov, P. Wenzel, and T. Munzel, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 851, 12 (2007). https://doi.org/10.1016/j.jchromb.2006.10.006

    Article  Google Scholar 

  25. V. V. Andrianov, S. G. Pashkevich, G. G. Yafarova, A. A. Denisov, V. S. Iyudin, T. Kh. Bogodvid, M. O. Dosina, V. A. Kulchitsky, and Kh. L. Gainutdinov, Appl. Magn. Reson. 47 (9), 965 (2016).

    Article  Google Scholar 

  26. O. G. Deryagin, S. A. Gavrilova, Kh. L. Gainutdinov, A. V. Golubeva, V. V. Andrianov, G. G. Yafarova, S. V. Buravkov, and V. B. Koshelev, Front. Neurosci. 11, 427 (2017). https://doi.org/10.3389/fnins.2017.00427

    Article  Google Scholar 

  27. Yu. Shanko, A. Zamaro, Yu. Takalchik-Stukach, S. Koulchitsky, S. Pashkevich, E. Panahova, V. Navit-skaya, M. Dosina, A. Denisov, S. Bushuk, and V. Kulchitsky, Biomed. J. Sci. Tech. Res. 7 (5), 001567 (2018). https://doi.org/10.26717/BJSTR.2018.07.001567

  28. V. D. Mikoyan, L. N. Kubrina, and A. F. Vanin, Biofizika 39, 915 (1994).

    Google Scholar 

  29. E. E. Van Faassen, M. P. Koeners, J. A. Joles, and A. F. Vanin, Nitric Oxide 18, 279 (2008).

    Article  Google Scholar 

  30. S. Sato, T. Tominaga, T. Ohnishi, and S. T. Ohnishi, Brain Res. 647, 91 (1994).

    Article  Google Scholar 

  31. T. Tominaga, S. Sato, T. Ohnishi, and S. T. Ohnishi, J. Cereb. Blood Flow Metab. 14, 715 (1994).

    Article  Google Scholar 

  32. V. P. Reutov, E. G. Sorokina, V. N. Shvalev, O. V. Kosmachevskaya, A. L. Krushinskii, V. S. Kuzenkov, M. M. Svinov, and N. S. Kositsyn, Usp. Fiziol. Nauk 43 (4), 73 (2012).

    Google Scholar 

  33. A. F. Vanin, Biophysics 62 (4), 509 (2017).

    Article  Google Scholar 

Download references

Funding

The work was partially supported by the Russian Foundation for Basic Research (grant no. 18-515-00003) and Belarus Republican Foundation for Fundamental Research (grant no. B18R-227). The measurement of the samples was performed at in the framework of a state order to the Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. L. Gainutdinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Khaitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gainutdinov, K.L., Andrianov, V.V., Yafarova, G.G. et al. Changes in Nitric Oxide and Copper Content in Rat Liver and Hippocampus after Brain Ischemia Modeling. Tech. Phys. 65, 1421–1426 (2020). https://doi.org/10.1134/S1063784220090182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220090182

Navigation