Skip to main content
Log in

Mechanisms of Variation of the Unipolarity during Thermal Processing of Heavily Doped LiNbO3:ZnO Crystals

  • SOLID STATE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The phenomenological mechanisms for increasing the unipolarity under thermal processing in the short-circuiting conditions for heavily doped LiNbO3:ZnO crystals are analyzed by comparing with the temperature behavior of nominally pure LiNbO3:ZnO crystals with the congruent composition. It is shown that an increase in the unipolarity and, hence, the disappearance of the domain structure in heavily doped LiNbO3:ZnO crystals is initiated by thermal decomposition of charged polar clusters stabilizing domain walls. The decomposition of polar clusters is accompanied with an abrupt jumpwise injection of extra charge carriers (Li+ cations). As a result, the conductivity of LiNbO3:ZnO crystals at a temperature above 800 K is an order of magnitude higher than that of nominally pure LiNbO3 crystals with the congruent composition. This leads to the degradation of the domain structure in LiNbO3:ZnO crystals in contrast to LiNbO3 crystals with the congruent composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. E. Lines and A. M. Glass, Principles and Application of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977).

    Google Scholar 

  2. Yu. S. Kuz’minov, Lithium Niobate and Tantalate: Materials for Nonlinear Optics (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  3. N. V. Sidorov, T. R. Volk, B. N. Mavrin, and V. T. Kalinnikov, Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum and Polaritons (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  4. V. Ya. Shur, E. L. Rumyantsev, E. V. Nikolaeva, and E. I. Shishkin, Appl. Phys. Lett. 77 (22), 3636 (2000). https://doi.org/10.1063/1.1329327

    Article  ADS  Google Scholar 

  5. M. N. Palatnikov, N. V. Sidorov, and V. T. Kalinnikov, Ferroelectric Solid Solutions Based on Niobium and Tantalum Oxide Compounds: Synthesis, Study of Structural Ordering and Physical Characteristics (Nauka, St. Petersburg, 2001–2002) [in Russian].

  6. M. N. Palatnikov, V. A. Sandler, N. V. Sidorov, O. V. Makarova, I. V. Biryukova, I. N. Efremov, and D. V. Ivanenko, Phys. Solid State 57 (8), 1541 (2015). https://doi.org/10.1134/S1063783415080235

    Article  ADS  Google Scholar 

  7. M. N. Palatnikov, V. A. Sandler, O. V. Makarova, N.  V.  Sidorov, D. V. Manukovskaya, I. N. Efremov, I. V. Biryukova, and K. Bormanis, Integr. Ferroeclectr. 173 (1), 119 (2016). https://doi.org/10.1080/10584587.2016.1186431

    Article  Google Scholar 

  8. M. N. Palatnikov, V. A. Sandler, N. V. Sidorov, and O. V. Makarova, Inorg. Mater. 52 (2), 147 (2016). https://doi.org/10.1134/S0020168516020114

    Article  Google Scholar 

  9. M. N. Palatnikov, V. A. Sandler, N. V. Sidorov, I.  V.  Biryukova, and O. V. Makarova, Inorg. Mater. 52 (12), 1291 (2016). https://doi.org/10.1134/S0020168516120086

    Article  Google Scholar 

  10. M. N. Palatnikov, V. A. Sandler, N. V. Sidorov, and O. V. Makarova, Izv. St. Petersburg Gos. Tekhnol. Inst. (Tekh. Univ.), No. 37, 75 (2016).

  11. G. T. Niitsu, H. Nagata, and A. C. M. Rodrigues, J. Appl. Phys. 95, 3116 (2004). https://doi.org/10.1063/1.1647263

    Article  ADS  Google Scholar 

  12. T. Volk and M. Wohlecke, Lithium Niobate: Defects, Photorefraction, and Ferroelectric Switching (Springer, Berlin, 2008).

    Google Scholar 

  13. A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics, London, 1983).

    Google Scholar 

  14. J. Hladik, Physics of Electrolytes (Academic, New York, 1972).

    Google Scholar 

  15. Acoustic Crystals: Handbook, Ed. by M. P. Shaskol’skaya (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  16. B. A. Strukov and A. P. Levanyuk, Physical Principles of Ferro-Electric Phenomena in Crystals (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  17. J. Burfoot and G. Taylor, Polar Dielectrics and Their Applications (Univ. California, Berkeley, 1979).

    Book  Google Scholar 

  18. M. N. Palatnikov, N. V. Sidorov, D. V. Manukovskaya, O. V. Makarova, and L. A. Aleshina, J. Am. Ceram. Soc. 100 (8), 3703 (2017). https://doi.org/10.1111/jace.14851

    Article  Google Scholar 

  19. M. N. Palatnikov, I. V. Birukova, S. M. Masloboeva, O. V. Makarova, D. V. Manukovskaya, and N. V. Sidorov, J. Cryst. Growth 386, 113 (2014). https://doi.org/10.1016/j.jcrysgro.2013.09.038

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Palatnikov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palatnikov, M.N., Sandler, V.A., Sidorov, N.V. et al. Mechanisms of Variation of the Unipolarity during Thermal Processing of Heavily Doped LiNbO3:ZnO Crystals. Tech. Phys. 65, 1246–1252 (2020). https://doi.org/10.1134/S1063784220080149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220080149

Navigation