Skip to main content
Log in

Acoustic Testing in the Technology of Production of Construction Ceramics with Reinforcing Additives

  • ACOUSTICS, ACOUSTOELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The behavior of the sound spectrum of free vibrations of cylindrical ceramic samples for light yellow face bricks is interpreted depending on the firing conditions, as well as on reinforcing additives of finely milled fiberglass wastes. A correlation of the frequencies and relaxation times of vibrations with the presence of internal defects and the compressive and bending strengths is found. A testing methodology that reduces the costs of industrial scaling-up of such a reinforcing technology for construction ceramics is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. V. Muñoz, M. P. Morales, V. G. Letelier, and M. A. Mendivil, Constr. Build. Mater 125, 241 (2016). https://doi.org/10.1016/j.conbuildmat.2016.08.024

    Article  Google Scholar 

  2. N. V. Boltakova, G. R. Faseeva, R. R. Kabirov, R. M. Nafikov, and Y. A. Zakharov, Waste Manage. 60, 230 (2016). https://doi.org/10.1016/j.wasman.2016.11.008

    Article  Google Scholar 

  3. GOST 23829-85: Acoustic Nondestructive Testing (Izd. Standartov, Moscow, 1986).

  4. E. Z. Kovarskaya and I. B. Moskovenko, Mire Nerazrushayushchego Kontrolya 58 (4), 13 (2012).

    Google Scholar 

  5. ASTM C1259-15: Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio for Advanced Ceramics by Impulse Excitation of Vibration (ASTM, West Conshohocken, PA, 2015).

  6. ASTM C1198-09(2013): Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio for Advanced Ceramics by Sonic Resonance (ASTM, West Conshohocken, PA, 2013).

  7. GOST 25714-83: Non-Destructive Control. Acoustic Sound Method of Open Porosity, Apparent Density, Density and Compression Strength Testing of Refractory Articles (Izd. Standartov, Moscow, 1983).

  8. GOST R 52710-2007: Abrasive Tools. Acoustic Method for Determination of Hardness and Sound Indices by Reduced Acoustic Wave Velocity (Standartinform, Moscow, 2008).

  9. GOST 24332-88: Silica Bricks and Stones. Ultrasonic Method of Compressive Strength Determination (Izd. Standartov, Moscow, 1989).

  10. F. Belli and F. J. Radermacher, in Proc. 5th Int. Conf. on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, Paderborn,1992, p. 123.

  11. I. Hertlin and S. Rieth-Hoerst, Tile & Brick International Manual (DVS, 2007).

    Google Scholar 

  12. P. Bosomworth, Ceram. Ind., No. 1, 20 (2005).

  13. E. Z. Kovarskaya and I. B. Moskovenko, Mire Nerazrushayushchego Kontrolya 68 (2), 27 (2015).

    Google Scholar 

  14. A. Ratle, M. Lagacét, V. Pandolfelli, C. Allairet, and M. Rigaudt, J. Can. Ceram. Soc. 65, 202 (1996).

    Google Scholar 

  15. T. Húlan, H. J. Ondruška, R. Podoba, and A. Trnik, Vestn. Mosk. Gos. Obl. Univ. Ser. Fiz.-Mat., No. 2, 54 (2013).

  16. T. Húlan, A. Trník, I. Medved’, I. Štubña, and T. Kaljuvee, AIP Conf. Proc. 1752, 040009 (2016). https://doi.org/10.1063/1.4955240

  17. G. R. Faseeva, R. M. Nafikov, S. E. Lapuk, Yu. A. Zakharov, A. A. Novik, A. A. Vjuginova, R. R. Kabirov, and L. N. Garipov, Ceram. Int. 43, 7202 (2017). https://doi.org/10.1016/j.ceramint.2017.03.008

    Article  Google Scholar 

  18. J. A. Franco-Villafañe, E. Flores-Olmedo, G. Báez, O. Gandarilla-Carrillo, and R. A. Méndez-Sánchez, Eur. J. Phys. 33, 1761 (2012). https://doi.org/10.1088/0143-0807/33/6/1761

    Article  Google Scholar 

  19. V. I. Erofeev, V. V. Kazhaev, and N. P. Semerikova, Waves in Rods. Dispersion. Dissipation. Nonlinearity (Fizmatlit, Moscow, 2002).

    Google Scholar 

  20. GOST 8462-85: Wall Materials. Methods for Determination of Ultimate Compressive and Bending Strength (Izd. Standartov, Moscow, 1987).

  21. M. Barth, F. Duckhorn, K. Tschöke, C. Tschöpe, and B. Köhler, in Proc. 19th World Conf. on Non-Destructive Testing, Munich,2016. http://www.ndt.net/article/wcndt2016/papers/we3f3.pdf.

  22. G. R. Faseeva, R. M. Nafikov, S. E. Lapuk, Yu. A. Zakharov, A. G. Kiyamov, R. R. Kabirov, L. N. Garipov, N. M. Lyadov, and I. A. Faizrakhmanov, Glass Ceram. 74, 450 (2018).

    Article  Google Scholar 

  23. G. R. Faseeva, I. E. Mumdzhi, L. R. Gilyazov, R. M. Nafikov, Yu. A. Zakharov, R. R. Kabirov, and S. I. Nikitin, Vestn. Kaz. Tekhnol. Univ. 20 (3), 68 (2017).

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation (contract no. 02.G25.31.0121, 2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Zakharov.

Ethics declarations

The authors declare that they do not have any conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nafikov, R.M., Faseeva, G.R., Lysogorskiy, Y.V. et al. Acoustic Testing in the Technology of Production of Construction Ceramics with Reinforcing Additives. Tech. Phys. 65, 291–298 (2020). https://doi.org/10.1134/S1063784220020164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220020164

Navigation