Skip to main content
Log in

Properties of amorphous carbon thin films grown by ion beam sputtering

  • Physical Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The electrical performance of amorphous carbon thin films obtained by the ion beam sputtering of a carbon target in argon has been investigated. It has been shown by the Raman spectroscopy method that these films have a graphite-like structure. It has also been found by conductivity and thermopower studies that the hopping mechanism of conductivity with a variable length of hops over localized states near the Fermi level changes to the mechanism of hopping over the nearest neighbors as the temperature rises from 77 to 190 K. Near room temperature, electrotransport is provided by variable-length hops over localized states at the tail of the valence band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Jonscher and R. M. Hill, in Thin-Film Physics (Mir, Moscow, 1978), pp. 180–263.

    Google Scholar 

  2. A. Grill, Diamond Relat. Mater. 8, 428 (1999).

    Article  ADS  Google Scholar 

  3. X. L. Peng and T. W. Clyne, Thin Solid Films 312, 207 (1998).

    Article  ADS  Google Scholar 

  4. V. I. Ivanov-Omskii, V. I. Siklitsky, A. A. Sitnikova, A. A. Suvorova, A. V. Tolmatchev, T. K. Zvonariova, and S. G. Yastrebov, Philos. Mag. 76, 973 (1997).

    Article  ADS  Google Scholar 

  5. J. Robertson, Diamond Relat. Mater. 1, 397 (1992).

    Article  ADS  Google Scholar 

  6. J. Robertson, Mater. Sci. Forum 52–53, 125 (1989).

    Google Scholar 

  7. A. Bubenzer, B. Dischler, G. Brandt, and P. Koidl, J. Appl. Phys. 54, 4590 (1983).

    Article  ADS  Google Scholar 

  8. S. Kaplan, F. Jansen, and M. Machonkin, Appl. Phys. Lett. 47, 750 (1985).

    Article  ADS  Google Scholar 

  9. J. W. Zou, K. Reichelt, K. Schmidt, and B. Dischler, J. Appl. Phys. 65, 3914 (1989).

    Article  ADS  Google Scholar 

  10. J. Robertson, Philos. Mag. B 76, 335 (1990).

    Article  ADS  Google Scholar 

  11. N. Mott and E. Davis, Electronic Processes in Non-Crystalline Materials (Oxford Univ. Press, 1979), Vol.1.

  12. S. H. Moustafa, M. Koos, and I. Pocsik, J. Non-Cryst. Solids 227–230, 1087 (1998).

    Article  Google Scholar 

  13. A. Grill, Thin Solid Films 355–356, 189 (1999).

    Article  Google Scholar 

  14. M. Koos, S. H. Moustafa, E. Szilagyi, and I. Pocsik, Diamond Relat. Mater. 8, 1919 (1999).

    Article  ADS  Google Scholar 

  15. R. Clausing, Diamond and Diamond-Like Films and Coatings (Plenum, New York, 1991).

    Book  Google Scholar 

  16. Sh. M. Mominzzaman, T. Soga, T. Jimbo, and M. Umeno, Diamond Relat. Mater. 10, 1839 (2001).

    Article  ADS  Google Scholar 

  17. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).

    Article  ADS  Google Scholar 

  18. A. C. Ferrari, B. Kleinsorge, G. Adamopoulos, J. Robertson, W. I. Milne, V. Stolojan, L. M. Brown, A. Libassi, and B. K. Tanner, J. Non-Cryst. Solids 266–269, 765 (2000).

    Article  Google Scholar 

  19. K. Schiffmann, Wear 216, 27 (1988).

    Article  Google Scholar 

  20. S. Muto, T. Kubo, Y. Kurokawa, and K. Suzuki, Thin Solid Films 322, 233 (1998).

    Article  ADS  Google Scholar 

  21. O. Yu. Prikhodko, N. K. Manabaev, N. R. Guseynov, S. Ya. Maksimova, S. L. Mikhailova, and E. A. Daineko, in Proc. Int. Conf. on Diamond and Carbon Materials, Riva del Garda, 2013, p.96.

    Google Scholar 

  22. S. A. Gridnev, Yu. E. Kalinin, A. V. Sitnikov, and O. V. Stognei, Nonlinear Phenomena in Nano-and Microheterogeneous Systems (BINOM, Moscow, 2012).

    Google Scholar 

  23. E. A. Smorgonskaya and V. I. Ivanov-Omskii, Semiconductors 39, 934 (2005).

    Article  ADS  Google Scholar 

  24. J. Robertson, Mater. Sci. Eng., R 37, 129 (2002).

    Article  Google Scholar 

  25. A. C. Ferrari, S. E. Rodil, and J. Robertson, Phys. Rev. B 67, 155306 (2003).

    Article  ADS  Google Scholar 

  26. V. I. Siklitskii, L. V. Lutsev, and M. V. Baidakova, Tech. Phys. Lett. 28, 283 (2002).

    Article  ADS  Google Scholar 

  27. J. Robertson, Philos. Mag. Lett. 57, 143 (1988).

    Article  ADS  Google Scholar 

  28. V. V. Kaminskii, L. N. Vasil’ev, M. V. Romanova, and S. M. Solov’ev, Phys. Solid State 43, 1030 (2001).

    Article  ADS  Google Scholar 

  29. A. W. P. Fung, Z. H. Wang, M. S. Dresselhaus, G. Dresselhaus, R. W. Pekala, and M. Endo, Phys. Rev. B 49, 17325 (1994).

    Article  ADS  Google Scholar 

  30. E. B. Maikena and P. Taborek, J. Appl. Phys. 87, 4223 (2000).

    Article  ADS  Google Scholar 

  31. K. Shimakawa and K. Miyake, Phys. Rev. 39, 7578 (1989).

    Article  ADS  Google Scholar 

  32. B. Meyerson and F. W. Smith, Solid State Commun. 41, 23 (1982).

    Article  ADS  Google Scholar 

  33. S. Bhattacharyya, J. Phys. D: Appl. Phys. 42, 085407 (2009).

    Article  ADS  Google Scholar 

  34. K. Takai, M. Oga, H. Sato, and T. Enoki, Phys. Rev. 67, 214202 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Kalinin.

Additional information

Original Russian Text © Yu.E. Kalinin, M.A. Kashirin, V.A. Makagonov, S.Yu. Pankov, A.V. Sitnikov, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 11, pp. 1722–1728.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinin, Y.E., Kashirin, M.A., Makagonov, V.A. et al. Properties of amorphous carbon thin films grown by ion beam sputtering. Tech. Phys. 62, 1724–1730 (2017). https://doi.org/10.1134/S1063784217110123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217110123

Navigation