Skip to main content
Log in

Influence of the reversible α–ε phase transition and preliminary shock compression on the spall strength of armco iron

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Full wave profiles are used to determine the Hugoniot elastic limit and the spall strength of armco iron samples with an as-received structure and the samples recovered after preliminary loading by plane shock waves with an amplitude of 8, 17, and 35 GPa. The measurements are performed at a shock compression pressure below and above the polymorphic a–e transition pressure. Metallographic analysis of the structure of armco iron shows that a developed twinned structure forms inside grains in the samples subjected to preliminary compression and recovered and that the twin concentration and size increase with the shock compression pressure. The spall strength of armco iron under shock loading below the phase transition pressure increases by approximately 10% due to its preliminary deformation twinning at the maximum shock compression pressure. The spallation of samples with various structures at a shock compression pressure above the phase transition proceeds at almost the same tensile stresses. The polymorphic transition in armco iron weakly affects its strength characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shock Waves and High-Strain-Rate Phenomena in Metals, Ed. by M. A. Meyers and L. E. Murr (Plenum, New York, 1981).

  2. L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 45, 4872 (1974).

    Article  ADS  Google Scholar 

  3. N. V. Kharitonov, G. V. Stepanov, and A. Ya. Krasovskii, Probl. Prochn., No. 9, 52 (1974).

    Google Scholar 

  4. S. E. Atroshchenko, I. O. Pashkov, and I. M. Ryadinskaya, Fiz. Met. Metalloved. 19, 797 (1965).

    Google Scholar 

  5. S. E. Atroshchenko, I. O. Pashkov, and I. M. Ryadinskaya, Fiz. Met. Metalloved. 19, 923 (1965).

    Google Scholar 

  6. E. A. Kozlov, I. V. Telichko, D. M. Gorbachev, D. G. Pankratov, A. V. Dobromyslov, and N. I. Taluts, Fiz. Met. Metalloved. 99 (3), 83 (2005).

    Google Scholar 

  7. A. V. Dobromyslov, E. A. Kozlov, and N. I. Taluts, Fiz. Met. Metalloved. 106, 548 (2008).

    Google Scholar 

  8. G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996).

    Google Scholar 

  9. L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43, 4669 (1972).

    Article  ADS  Google Scholar 

  10. S. V. Razorenov, G. I. Kanel, A. S. Savinykh, and V. E. Fortov, “Large tensions and strength of iron in different structure states,” in Shock Compression of Condensed Matter-2005, Ed. by M. D. Furnish, M. Elert, T. P. Russell, and C. T. White, (AIP, Melville, New York, 2006); AIP Conf. Proc. 845, 650 (2006).

    Google Scholar 

  11. G. V. Garkushin, O. N. Ignatova, G. I. Kanel’, L. Meier, and S. V. Razorenov, Mekh. Tverd. Tela, No. 4, 155 (2010).

    Google Scholar 

  12. G. V. Garkushin, S. V. Razorenov, G. I. Kanel’, V. A. Skripnyak, V. A. Kraskoveikin, and A. A. Kozulin, Phys. Solid State 57, 337 (2015).

    Article  ADS  Google Scholar 

  13. R. Z. Valiev and I. V. Alexandrov, Nanostructured Materials Produced by Severe Plastic Deformation (Logos, Moscow, 2000).

    Google Scholar 

  14. G. I. Kanel’, Prikl. Mekh. Tekh. Fiz. 42, 194 (2001).

    Google Scholar 

  15. G. I. Kanel’, S. V. Razorenov, and V. E. Fortov, Mekh. Tverd. Tela, No. 4, 86 (2005).

    Google Scholar 

  16. G. I. Kanel’, S. V. Razorenov, A. S. Savinykh, E. B. Zaretskii, and Yu. R. Kolobov, “Study of structural levels determining resistance to fast deformation and fracture of metals and alloys,” RF Preprint No. 1-478, OIVT RAN (Joint Institute of High Temperature, Moscow, 2004).

    Google Scholar 

  17. G. V. Garkushin, S. V. Razorenov, and O. N. Ignatova, Deform. Razrush. Mater., No. 4, 38 (2008).

    Google Scholar 

  18. V. A. Ogorodnikov, A. G. Ivanov, and E. S. Tyun’kin, Fiz. Goreniya Vzryva, No. 1, 94 (1992).

    Google Scholar 

  19. G. V. Garkushin and S. V. Razorenov, Tech. Phys. 60, 1021 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Garkushin.

Additional information

Original Russian Text © G.V. Garkushin, N.S. Naumova, S.A. Atroshenko, S.V. Razorenov, 2016, published in Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 61, No. 1, pp. 86–92.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garkushin, G.V., Naumova, N.S., Atroshenko, S.A. et al. Influence of the reversible α–ε phase transition and preliminary shock compression on the spall strength of armco iron. Tech. Phys. 61, 84–90 (2016). https://doi.org/10.1134/S1063784216010102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784216010102

Keywords

Navigation