Skip to main content
Log in

Study of the Structure and Properties of a High-Entropy AlCoCrFeNi Alloy after Electron-Beam Processing

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Using wire-arc additive manufacturing (WAAM), we produced samples of Al–Co–Cr–Fe–Ni high-entropy alloy (HEA) with a grain size of 4–15 µm. Inclusions of the second phase were found along the boundaries and in the volume of the grains. The near-boundary volumes of the alloy (volumes located along grain boundaries) are enriched in chromium and iron atoms, the volume of grains is enriched in nickel and aluminum atoms, and cobalt is quasi-uniformly distributed in the alloy. The inclusions of an elongated shape are enriched in chromium, iron, and oxygen atoms and may be carbides. Microhardness, modulus of elasticity, and tribological properties of the alloy are determined and the stretch curves are analyzed. Irradiation of the HEA with a pulsed electron beam is accompanied by the release of grain boundaries from precipitates of the second phase, which indicates the homogenization of the material. High-speed crystallization of the molten surface layer of HEA samples is accompanied by the formation of a columnar structure with a submicrometer-nanocrystalline structure. The electron-beam processing decreases the microhardness of the surface layer of the alloy with a thickness of up to 90 µm, which may be due to the relaxation of internal stress fields formed in the initial material during its manufacture. Irradiation of a high-entropy alloy with an intense pulsed electron beam improves the strength and plasticity of the material, increasing the compressive strength by 1.1–1.6 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. P. George, W. A. Curtin, and C. C. Tasan, Acta Mater. 188, 435 (2020).

    Article  ADS  Google Scholar 

  2. V. Shivam, J. Basu, V. K. Pandey, Y. Shadangi, and N. K. Mukhopadhyay, Adv. Powder Technol. 29, 2221 (2018).

    Article  Google Scholar 

  3. U. L. Ganesh and H. Raghavendra, J. Therm. Anal. Calorim. 139, 207 (2020).

    Article  Google Scholar 

  4. Y. A. Alshataif, S. Sivasankaran, F. A. Al-Mufadi, A. S. Alaboodi, and H. R. Ammar, Met. Mater. Int. 26, 1099 (2019).

    Article  Google Scholar 

  5. K. C. Cheng, J. H. Chen, S. Stadler, and S. H. Chen, Appl. Surf. Sci. 478, 478 (2019).

    Article  ADS  Google Scholar 

  6. J. Joseph, P. Hodgson, T. Jarvis, X. Wu, N. Stanford, and D. M. Fabijanic, Mater. Sci. Eng. A 733, 59 (2018).

    Article  Google Scholar 

  7. R. Jian, L. Wang, S. Zhou, Y. Zhu, Y. J. Liang, B. Wang, and Y. Xue, Mater. Lett. 278, 128405 (2020).

    Article  Google Scholar 

  8. L. Hou, J. Hui, Y. Yao, J. Chen, and J. Liu, Vacuum 164, 212 (2019).

    Article  ADS  Google Scholar 

  9. Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. Lu, Prog. Mater. Sci. 61, 1 (2014).

    Article  Google Scholar 

  10. B. Cantor, Entropy 16, 4749 (2014).

    Article  ADS  Google Scholar 

  11. D. B. Miracle and O. N. Senkov, Acta Mater. 122, 448 (2017).

    Article  ADS  Google Scholar 

  12. W. Zhang, P. K. Liaw, and Y. Zhang, Sci. China Earth Sci. 61, 2 (2018).

    Article  Google Scholar 

  13. K. A. Osintsev, V. E. Gromov, S. V. Konovalov, Yu. F. Ivanov, and I. A. Panchenko, Izv. Ferr. Metall., No. 4, 1 (2021).

  14. A. D. Pogrebnyak, A. A. Bagdasapuan, I. V. Yakushchenko, and V. M. Beresnev, Russ. Chem. Rev. 83, 1027 (2014).

    Article  ADS  Google Scholar 

  15. A. S. Rogachev, Phys. Met. Mater. Sci. 121, 807 (2020).

    Google Scholar 

  16. M. H. Tsai, R. C. Tsai, T. Chang, and W. F. Huang, Metals (Basel) 9, 1 (2019).

    Article  Google Scholar 

  17. Y. Y. Zhao, Y. X. Ye, C. Z. Liu, R. Feng, K. F. Yao, and T. G. Nieh, Intermetallics 113, 106561 (2019).

    Article  Google Scholar 

  18. D. Oleszak, A. Antolak-Dudka, and T. Kulik, Mater. Lett. 232, 160 (2018).

    Article  Google Scholar 

  19. J. Wang, Y. Liu, B. Liu, Y. Wang, Y. Cao, T. Li, and R. Zhou, Mater. Sci. Eng. A 689, 233 (2017).

    Article  Google Scholar 

  20. N. Yurchenko, E. Panina, M. Tikhonovsky, G. Salishchev, S. Zherebtsov, and N. Stepanov, Int. J. Refract. Met. Hard Mater., 105322 (2020).

  21. T. W. Lu, C. S. Feng, Z. Wang, K. W. Liao, Z. Y. Liu, Y. Z. Xie, J. G. Hu, and W. B. Liao, Appl. Surf. Sci. 494, 72 (2019).

    Article  ADS  Google Scholar 

  22. Y. Geng, S. V. Konovalov, and X. Chen, Prog. Phys. Met. 21, 26 (2020).

    Article  Google Scholar 

  23. Y. H. Zhou, Z. H. Zhang, Y. P. Wang, G. Liu, S. Y. Zhou, Y. L. Li, J. Shen, and M. Yan, Addit. Manuf. 25, 204 (2019).

    Google Scholar 

  24. Y. A. Alshataif, S. Sivasankaran, F. A. Al-Mufadi, A. S. Alaboodi, and H. R. Ammar, Met. Mater. Int. 26, 1099 (2019).

    Article  Google Scholar 

  25. Yu. F. Ivanov, V. E. Gromov, D. V. Zagulyaev, S. V. Konovalov, Yu. A. Rubannikova, and A. P. Semin, Prog. Phys. Met. 21, 345 (2020).

    Article  Google Scholar 

  26. V. E. Gromov, Yu. F. Ivanov, S. E. Vorobiev, and S. V. Konovalov, Fatigue of Steels Modified by High Intensity Electron Beams (Cambridge Univ. Press, Cambridge, 2015).

    Google Scholar 

  27. Q. Shen, X. Kong, and X. Chen, J. Mater. Sci. Technol. 74, 136 (2021).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 20-19-00452.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Shliarova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, Y.F., Gromov, V.E., Konovalov, S.V. et al. Study of the Structure and Properties of a High-Entropy AlCoCrFeNi Alloy after Electron-Beam Processing. Phys. Solid State 64, 372–378 (2022). https://doi.org/10.1134/S1063783422080042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422080042

Keywords:

Navigation