Skip to main content
Log in

Unoccupied Electron States of Ultrathin Quaterphenyl Films on the Surfaces of Layered CdS and Oxidized Silicon

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Some results of studying the unoccupied electron states and the formation of a boundary potential barrier during the thermal vacuum deposition of ultrathin 4-quaterphenyl oligophenyl films onto the surfaces of CdS and oxidized silicon were presented. Using X-ray photoelectron spectroscopy (XPS), the atomic Cd and S concentrations were established to be the same on the surface of a 75-nm CdS layer formed by atomic layer deposition (ALD). The electron characteristics of 4-quaterpheyn films with a thickness of up to 8 nm were studied in the process of their deposition onto the surface of a formed CdS layer and the surface of oxidized silicon by total current spectroscopy (TCS) within an energy range from 5 to 20 eV above EF. The energy positions of major maxima in the fine structure of the total current spectra (FSTCS) of 4-quaterphenyl films were established. The positions of maxima were reproducible, when the two selected materials of substrates were used. A slight decrease in the work function from 4.2 to 4.1 eV during the thermal deposition of 4-quaterpheynl onto the CdS surface was established. The work function was revealed to grow from 4.2 to 4.5 eV, when a 4-quaterphenyl film was deposited onto the surface of oxidized silicon. Some possible mechanisms of physicochemical interaction between the 4-quaterphenyl film and the surfaces of the studied substrates that lead to different work function values observed on these substrates were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. A. Attia, M. M. Saadeldin, H. S. Soliman, A.‑S. Gadallah, and K. Sawaby, Opt. Mater. 62, 711 (2016).

    Article  ADS  Google Scholar 

  2. M. S. Kazantsev, V. G. Konstantinov, D. I. Dominskiy, V. V. Bruevich, V. A. Postnikov, Y. N. Luponosov, V. A. Tafeenko, N. M. Surin, S. A. Ponomarenko, and D. Y. Paraschuk, Synt. Met. 232, 60 (2017).

    Article  Google Scholar 

  3. V. A. Postnikov, M. S. Lyasnikova, A. A. Kulishov, V. V. Grebenev, and O. V. Borshchev, Russ. J. Phys. Chem. A 93, 1741 (2019).

    Article  Google Scholar 

  4. V. A. Postnikov, Y. I. Odarchenko, A. V. Iovlev, V. V. Bruevich, A. Y. Pereverzev, L. G. Kudryashova, V. V. Sobornov, L. Vidal, D. Chernyshov, Y. N. Lu-ponosov, O. V. Borshchev, N. M. Surin, S. A. Ponomarenko, D. A. Ivanov, and D. Y. Paraschuk, Cryst. Growth Des. 14, 1726 (2014).

    Article  Google Scholar 

  5. L. G. Kudryashova, M. S. Kazantsev, V. A. Postnikov, V. V. Bruevich, Y. N. Luponosov, N. M. Surin, O. V. Borshchev, S. A. Ponomarenko, M. S. Pshenichnikov, and D. Y. Paraschuk, ACS Appl. Mater. Interfaces 8, 10088 (2016).

    Article  Google Scholar 

  6. A. N. Aleshin, I. P. Shcherbakov, D. A. Kirilenko, L. B. Matyushkin, and V. A. Moshnikov, Phys. Solid State 61, 256 (2019).

    Article  ADS  Google Scholar 

  7. P. S. Krylov, A. S. Berestennikov, S. A. Fefelov, A. S. Komolov, and A. N. Aleshin, Phys. Solid State 58, 2567 (2016).

    Article  ADS  Google Scholar 

  8. A. A. A. Darwish, Infrared Phys. Technol. 82, 96 (2017).

    Article  ADS  Google Scholar 

  9. P. G. Schroeder, M. W. Nelson, B. A. Parkinson, and R. Schlaf, Surf. Sci. 459, 349 (2000).

    Article  ADS  Google Scholar 

  10. P. Shen, M. Huang, J. Qian, J. Li, S. Ding, X.-S. Zhou, B. Xu, Z. Zhao, and B. Z. Tang, Angew. Chem. Int. Ed. 59, 4581 (2020).

    Article  Google Scholar 

  11. J. R. Bakke, H. J. Jung, J. T. Tanskanen, R. Sinclair, and S. F. Bent, Chem. Mater. 22, 4669 (2010).

    Article  Google Scholar 

  12. N. P. Dasgupta, X. Meng, J. W. Elam, and A. B. F. Mar-tinson, Acc. Chem. Res. 48, 341 (2015).

    Article  Google Scholar 

  13. H. Frankenstein, C. Z. Leng, M. D. Losego, and G. L. Frey, Org. Electron. 64, 37 (2019).

    Article  Google Scholar 

  14. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, Yu. A. Panina, V. S. Sobolev, A. V. Koroleva, S. A. Pshenichnyuk, N. L. Asfandiarov, A. Modelli, B. Handke, O. V. Borshchev, and S. A. Ponomarenko, J. Electron Spectrosc. Rel. Phenom. 235, 40 (2019).

    Article  Google Scholar 

  15. A. S. Komolov, Tech. Phys. 51, 362 (2006).

    Article  Google Scholar 

  16. A. S. Komolov, E. F. Lazneva, S. N. Akhremtchik, N. S. Chepilko, and A. A. Gavrikov, J. Phys. Chem. C 117, 12633 (2013).

    Article  Google Scholar 

  17. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, Yu. A. Panina, A. V. Baramygin, G. D. Zashikhin, and S. A. Pshenichnyuk, Phys. Solid State 58, 377 (2016).

    Article  ADS  Google Scholar 

  18. S. A. Pshenichnyuk, A. Modelli, E. F. Lazneva, and A. S. Komolov, J. Phys. Chem. A 120, 2667 (2016).

    Article  Google Scholar 

  19. S. A. Pshenichnyuk, A. Modelli, N. L. Asfandiarov, E. F. Lazneva, and A. S. Komolov, J. Chem. Phys. 151, 214309 (2019).

    Article  ADS  Google Scholar 

  20. S. A. Kukushkin, A. V. Osipov, and A. I. Romanychev, Phys. Solid State 58, 1448 (2016).

    Article  ADS  Google Scholar 

  21. B. Handke, L. Klita, and W. Niemiec, Surf. Sci. 666, 70 (2017).

    Article  ADS  Google Scholar 

  22. I. A. Averin, A. A. Karmanov, V. A. Moshnikov, I. A. Pronin, S. E. Igoshina, A. P. Sigaev, and E. I. Terukov, Phys. Solid State 57, 2373 (2015).

    Article  ADS  Google Scholar 

  23. I. B. Olenych, O. I. Aksimentyeva, L. S. Monastyrskii, Y. Y. Horbenko, M. V. Partyka, A. P. Luchechko, and L. I. Yarytska, Nanoscale Res. Lett. 11, 43 (2016).

    Article  ADS  Google Scholar 

  24. L. Grzadziel, M. Krzywiecki, G. Genchev, and A. Erbe, Synth. Met. 223, 199 (2017).

    Article  Google Scholar 

  25. F. Moulder, W. F. Stickle, P. E. Sobol, and K. Bomben, Handbook of X-ray Photoelectron Spectroscopy, 2nd ed., Ed. by J. Chastain (Perkin-Elmer Corp. Phys. Electron., Eden Prairie, 1992).

    Google Scholar 

  26. A. S. Komolov, E. F. Lazneva, and S. N. Akhremtchik, Appl. Surf. Sci. 256, 2419 (2010).

    Article  ADS  Google Scholar 

  27. I. Bartos, Progr. Surf. Sci. 59, 197 (1998).

    Article  ADS  Google Scholar 

  28. J. Hwang, A. Wan, and A. Kahn, Mater. Sci. Eng. R 64, 1 (2009).

    Article  Google Scholar 

  29. A. S. Komolov, Y. M. Zhukov, E. F. Lazneva, A. N. Aleshin, S. A. Pshenichnuk, N. B. Gerasimova, Yu. A. Panina, G. D. Zashikhin, and A. V. Baramygin, Mater. Des. 113, 319 (2017).

    Article  Google Scholar 

  30. A. S. Komolov, S. N. Akhremtchik, and E. F. Lazneva, Spectrochim. Acta, A 798, 708 (2011).

    Article  ADS  Google Scholar 

  31. A. S. Komolov and P. J. Moeller, Colloids Surf., A 239, 49 (2004).

    Article  Google Scholar 

  32. A. S. Komolov and P. J. Moeller, Appl. Surf. Sci. 212, 497 (2003).

    Article  ADS  Google Scholar 

  33. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, V. S. Sobolev, Yu. A. Panina, S. A. Pshenichnyuk, N. L. Asfandiarov, and B. Handke, Phys. Solid State 62, 1256 (2020).

    Article  Google Scholar 

  34. W. Belza, K. Szajna, M. Kratzer, D. Wrana, K. Cieslik, M. Krawiec, C. Teichert, and F. Krok, J. Phys. Chem. C 124, 5681 (2020).

    Article  Google Scholar 

  35. A. L. Shu, W. E. McClain, J. Schwartz, and A. Kahn, Org. Electron. 15, 2360 (2014).

    Article  Google Scholar 

  36. S. Braun, W. Salaneck, and M. Fahlman, Adv. Mater. 21, 1450 (2009).

    Article  Google Scholar 

  37. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, V. S. Sobolev, S. A. Pshenichnyuk, N. L. Asfandiarov, V. A. Kraikin, and B. Handke, Phys. Solid State 63, 362 (2021).

    Article  ADS  Google Scholar 

  38. M. Gruenewald, L. K. Schirra, P. Winget, M. Kozlik, P. F. Ndione, A. K. Sigdel, J. J. Berry, R. Forker, J.‑L. Brédas, T. Fritz, and O. L. A. Monti, J. Phys. Chem. C 119, 4865 (2015).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was carried out on the equipment of the Research Park of Saint-Petersburg State University “Physical Methods of Surface Investigations” and “Innovative Technologies of Composite Nanomaterials.”

Funding

The TCS studies of 4-quaterphenyl films on silicon were supported by the Russian Science Foundation (grant no. 19-13-00021). The surface studies of formed CdS were sponsored by the Russian Foundation for Basic Research (grant no. 20-03-00026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Komolov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komolov, A.S., Lazneva, E.F., Gerasimova, N.B. et al. Unoccupied Electron States of Ultrathin Quaterphenyl Films on the Surfaces of Layered CdS and Oxidized Silicon. Phys. Solid State 63, 1205–1210 (2021). https://doi.org/10.1134/S1063783421080138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421080138

Keywords:

Navigation