Skip to main content
Log in

First-Principles Study of the Physical Properties of the New Quaternary Heusler Alloy CoMnVZ (Z = Sn and Sb)

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The physical properties of two new quaternary Heusler alloys CoMnVSn and CoMnVSb were systematically studied by using first-principles calculation. The results show that the type-1 structures of ferromagnetic phase for these two alloys are the most stable. They all exhibit half-metallic behavior at equilibrium, and their half-metallic characteristics are maintained in the lattice region of 5.73–6.19 Å for CoMnVSn and 5.82–6.18 Å for CoMnVSb. The calculated magnetic moment Mt of each molecular unit in the half-metal lattice region strictly follows the Slater–Pauling empirical rule Mt = Zt – 24, where Zt is the number of valence electrons. The elastic constants show that the mechanical properties of the two compounds are stable at equilibrium, and the anisotropy factor and three-dimensional Young’s modulus confirm that they have anisotropy. It is expected that the CoMnVSn and CoMnVSb alloys are promising candidates in spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Y. Liu, Z. F. Liu, T. L. Song, and X. Cui, J. Mater. Chem. C 5, 727 (2017).

    Article  Google Scholar 

  2. W. H. Xie, Y. Q. Xu, B. G. Liu, and D. G. Pettifor, Phys. Rev. Lett. 91, 037204 (2003).

    Article  ADS  Google Scholar 

  3. P. Cui, J. Zeng, H. W. Peng, J. H. Choui, Z. Y. Li, C. G. Zeng, C. K. Shih, J. P. Perdew, and Z. Y. Zhang, Phys. Rev. B 100, 195304 (2019).

    Article  ADS  Google Scholar 

  4. H. M. Huang, M. L. Cao, Z. Y. Jiang, Y. C. Xiong, X. Zhang, S. J. Luo, and A. Laref, Phys. Chem. Chem. Phys. 21, 16213 (2019).

    Article  Google Scholar 

  5. M. J. Lyu, Y. W. Liu, Y. D. Zhi, C. Xiao, B. C. Gu, X. M. Hua, S. J. Fan, Y. Lin, W. Bai, W. Tong, Y. M. Zou, B. C. Pan, B. J. Ye, and Y. Xie, J. Am. Chem. Soc. 137, 15043 (2015).

    Article  Google Scholar 

  6. K. Everschor-Sitte, M. Sitte, and A. H. MacDonald, J. Appl. Phys. 116, 083906 (2014).

    Article  ADS  Google Scholar 

  7. C. Wang, Y. H. Zhao, and Y. Liu, Acta Phys. Sin. 68, 176301 (2019).

    Article  Google Scholar 

  8. J. Finley, C. H. Lee, P. Y. Huang, and L. Q. Liu, Adv. Mater. 31, 1805361 (2019).

    Article  Google Scholar 

  9. J. H. Ma, J. G. He, D. Mazumdar, K. Munira, S. Keshavarz, T. Lovorn, C. Wolverton, A. W. Ghosh, and W. H. Butler, Phys. Rev. B 98, 094410 (2018).

    Article  ADS  Google Scholar 

  10. X. T. Wang, T. T. Lin, H. Rozale, X. F. Dai, and G. D. Liu, J. Magn. Magn. Mater. 402, 190 (2016).

    Article  ADS  Google Scholar 

  11. N. Nazemi and F. Ahmadian, Phys. Solid State 61, 1 (2019).

    Article  ADS  Google Scholar 

  12. M. Sargolzaei, M. Richter, K. Koepernik, I. Opahle, H. Eschrig, and I. Chaplygin, Phys. Rev. B 74, 224410 (2006).

    Article  ADS  Google Scholar 

  13. M. G. Kostenko, A. V. Lukoyanov, and E. I. Shreder, JETP Lett. 107, 126 (2018).

    Article  Google Scholar 

  14. S. Minami, F. Ishii, Y. P. Mizuta, and M. Saito, Appl. Phys. Lett. 113, 032403 (2018).

    Article  ADS  Google Scholar 

  15. M. Ram, A. Saxena, A. E. Aly, and A. Shankar, RSC Adv. 10, 7661 (2020).

  16. S. Ouardi, G. H. Fecher, C. Felser, and J. Kubler, Phys. Rev. Lett. 110, 100401 (2013).

    Article  ADS  Google Scholar 

  17. G. Z. Xu, E. K. Liu, Y. Du, G. J. Li, G. D. Liu, W. H. Wang, and G. H. Wu, Eur. Phys. Lett. 102, 17007 (2013).

    Article  ADS  Google Scholar 

  18. O. N. Miroshkina, M. A. Zagrebin, V. V. Sokolovskiy, and V. D. Buchelnikov, Phys. Solid State 60, 1139 (2018).

    Article  ADS  Google Scholar 

  19. M. Rostami, M. Afkani, M. R. Torkamani, and F. Kanjouri, Mater. Chem. Phys. 248, 122923 (2020).

    Article  Google Scholar 

  20. T. Yang, J. X. You, L. Y. Hao, B. Khenata, Z. Y. Wang, and X. T. Wang, J. Magn. Magn. Mater. 498, 166188 (2020).

    Article  Google Scholar 

  21. J. J. Han, Z. W. Wang, W. W. Xu, C. U. Wang, and X. J. Liu, J. Magn. Magn. Mater. 422, 80 (2017).

    Article  ADS  Google Scholar 

  22. M. K. Zayed, A. A. Elabbar, and O. A. Yassin, J. Alloys Compd. 737, 790 (2018).

    Article  Google Scholar 

  23. A. Amudhavalli, R. Rajeswarapalanichamy, and K. Lyakutti, Phase Trans. 92, 875 (2019).

    Article  Google Scholar 

  24. H. Z. Luo, G. D. Liu, F. B. Meng, L. L. Wang, E. K. Liu, G. H. Wu, X. X. Zhu, and C. B. Jiang, Comput. Mater. Sci. 50, 3119 (2011).

    Article  Google Scholar 

  25. L. Fan, F. Chen, C. M. Li, X. Hou, X. Zhu, J. L. Luo, and Z. Q. Chen, J. Magn. Magn. Mater. 497, 166060 (2020).

    Article  Google Scholar 

  26. Q. F. Li, H. F. Zhao, X. Zhong, and J. L. Su, J. Magn. Magn. Mater. 324, 1463 (2012).

    Article  ADS  Google Scholar 

  27. T. M. Bhat and D. C. Gupta, J. Magn. Magn. Mater. 435, 173 (2017).

    Article  ADS  Google Scholar 

  28. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  29. G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).

    Article  ADS  Google Scholar 

  30. P. E. Blochl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16223 (1994).

    Article  ADS  Google Scholar 

  31. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  ADS  Google Scholar 

  32. S. Idrissi, H. Labrim, S. Ziti, and L. Bahmad, Appl. Phys. A 126, 190 (2020).

    Article  ADS  Google Scholar 

  33. H. M. Huang, Z. Y. Jiang, Y. J. Hu, W. Li, and S. J. Luo, Solid State Sci. 97, 106018 (2019).

    Article  Google Scholar 

  34. B. G. Liu, Phys. Rev. B 67, 172411 (2003).

    Article  ADS  Google Scholar 

  35. F. Ak, F. Güçlü, B. Saatçi, N. Kervan, and S. Kervan, J. Supercond. Nov. Magn. 29, 409 (2016).

    Article  Google Scholar 

  36. H. M. Huang, S. J. Luo, and K. L. Yao, Phys. B (Amsterdam, Neth.) 406, 1368 (2011).

  37. H. Lashgari, M. R. Abolhassani, A. Boochani, E. Sartipi, R. Taghavi-Mendi, and A. Ghaderi, Indian J. Phys. 90, 909 (2016).

    Article  ADS  Google Scholar 

  38. I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002).

    Article  ADS  Google Scholar 

  39. G. D. Liu, X. F. Dai, H. Y. Liu, J. L. Chen, Y. X. Li, G. Xiao, and G. H. Wu, Phys. Rev. B 77, 014424 (2008).

    Article  ADS  Google Scholar 

  40. J. Wang, S. Yip, S. R. Phillpot, and D. Wolf, Phys. Rev. Lett. 71, 4182 (1993).

    Article  ADS  Google Scholar 

  41. Hayatullah, G. Murtaza, R. Khenata, S. Muhammad, A. H. Reshak, K. M. Wong, S. Bin Omran, and Z. A. Alahmed, Comput. Mater. Sci. 85, 402 (2014).

    Article  Google Scholar 

  42. X. D. Zhang, W. Y. Huang, J. Y. Chen, C. Liu, H. Yu, L. J. Zhao, and W. Jiang, Vacuum 157, 312 (2018).

    Article  ADS  Google Scholar 

  43. Y. Zhou, J. M. Zhang, X. M. Wei, and Y. H. Huang, J. Supercond. Nov. Magn. 33, 2235 (2020).

    Article  Google Scholar 

  44. L. Chen, M. G. Zhang, J. Chang, and Z. Y. Jiang, Ceram. Int. 45, 2457 (2019).

    Article  Google Scholar 

  45. L. Chen and Z. Y. Jiang, Int. J. Refract. Met. Hard Mater. 92, 105319 (2020).

    Article  Google Scholar 

Download references

Funding

This work is supported by the Doctoral Scientific Research Foundation of Hubei University of Automotive Technology (grant no. BK201804), the Natural Science Foundation of Hubei Province (grant no. 2017CFB740), and the Innovation Training Program for College Students of Hubei University of Automotive Technology (grant no. DC2019118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-M. Huang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, HJ., Huang, HM. & Luo, SJ. First-Principles Study of the Physical Properties of the New Quaternary Heusler Alloy CoMnVZ (Z = Sn and Sb). Phys. Solid State 63, 272–278 (2021). https://doi.org/10.1134/S1063783421020128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421020128

Keywords:

Navigation