Skip to main content
Log in

Quantum Friction and van der Waals Friction in Configuration Particle–Plate and Plate–Plate: Nonlocal Effects

  • SURFACE PHYSICS AND THIN FILMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

In the nonrelativistic approximation of fluctuation electrodynamics, using the specular reflection model and the nonlocal dielectric permittivity of a metal, simple analytical expressions are obtained for the friction forces in the particle-plate and plate-plate configurations at relative motion of bodies with constant velocity. It has been shown that at distances of about 1–10 nm, for an Au nanoparticle (or a gold plate) moving near another similar plate at rest, the dissipative forces are 2–4 orders of magnitude higher than when using the Drude local dielectric function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Aspelmeyer, T. J. Kippenberg, and M. Marquardt, Rev. Mod. Phys. 86, 1391 (2014).

    Article  ADS  Google Scholar 

  2. K. A. Milton, J. S. Hoye, and I. Brevik, Symmetry 8, 29 (2016).

    Article  Google Scholar 

  3. G. V. Dedkov and A. A. Kyasov, Phys. Usp. 60, 559 (2017).

    Article  ADS  Google Scholar 

  4. A. I. Volokitin and B. N. J. Persson, Electromagnetic Fluctuations at the Nanoscale. Theory and Applications (Springer, Berlin, Heidelberg, 2017).

    Book  Google Scholar 

  5. G. L. Klimchitskaya and V. M. Mostepanenko, Vestn. SPb. Politekh. Univ., No. 1, 41 (2015);

  6. Mod. Phys. Lett. A 34, 2040007 (2020).

  7. R. Esquivel and V. B. Svetovoy, Phys. Rev. A 69, 062102 (2004).

    Article  ADS  Google Scholar 

  8. V. Despoja, M. Sunjic, and L. Marusic, Phys. Rev. B 75, 045422 (2007).

    Article  ADS  Google Scholar 

  9. V. Despoja, P. M. Echenique, and M. Sunjic, Phys. Rev. B 83, 205424 (2011).

    Article  ADS  Google Scholar 

  10. D. Reiche, D. A. R. Dalvit, K. Busch, and F. Intravaia, Phys. Rev. B 95, 155448 (2017).

    Article  ADS  Google Scholar 

  11. R. H. Ritchie and A. L. Marusak, Surf. Sci. 4, 234 (1966).

    Article  ADS  Google Scholar 

  12. R. Nunez, P. M. Echenique, and R. H. Ritchie, J. Phys. C 13, 4229 (1980).

    Article  ADS  Google Scholar 

  13. F. J. Garcia de Abajo and P. M. Echenique, Phys. Rev. B 46, 2663 (1992).

    Article  ADS  Google Scholar 

  14. G. V. Dedkov and A. A. Kyasov, Surf. Sci. 604, 562 (2010).

    Article  ADS  Google Scholar 

  15. G. V. Dedkov and A. A. Kyasov, Phys. Solid State 44, 1779 (2002).

    Article  ADS  Google Scholar 

  16. T. L. Ferrell, P. M. Echenique, and R. H. Ritchie, Solid State Commun. 32, 419 (1979).

    Article  ADS  Google Scholar 

  17. E. M. Lifshitz, Sov. Phys. JETP 2, 73 (1956).

    Google Scholar 

  18. N. D. Mermin, Phys. Rev. B 1, 2362 (1970).

    Article  ADS  Google Scholar 

  19. J. B. Pendry, J. Phys.: Condens. Matter 9, 10301 (1997).

    ADS  Google Scholar 

  20. V. G. Polevoy, Sov. Phys. JETP 71, 1119 (1990).

    Google Scholar 

  21. G. V. Dedkov and A. A. Kyasov, Phys. Solid State 60, 2349 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. V. Dedkov or A. A. Kyasov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Dedkov

APPENDIX A

APPENDIX A

In [20], transforming the general expression for the friction force obtained in the Rytov–Levin–Polevoy theory [19] with the local dielectric permittivity ε(ω), we obtained a formula for the friction force of two parallel thick plates in the case of their relative motion with nonrelativistic velocity V/c \( \ll \) 1 (values related to plates 1 and 2 are provided with indices 1, 2)

$${{F}_{x}} = - \frac{\hbar }{{4{{\pi }^{3}}}}\int\limits_0^\infty {d\omega } \int {{{d}^{2}}k{{k}_{x}}\left[ {\operatorname{Im} \left( {\frac{{{{q}_{1}}}}{{{{\varepsilon }_{1}}}}} \right)\operatorname{Im} \left( {\frac{{{{{\tilde {q}}}_{2}}}}{{{{{\tilde {\varepsilon }}}_{2}}}}} \right)\frac{{{{{\left| q \right|}}^{2}}}}{{{{{\left| {{{Q}_{e}}} \right|}}^{2}}}}} \right.} $$
$$\left. { + \;\operatorname{Im} \left( {\frac{{{{q}_{1}}}}{{{{\mu }_{1}}}}} \right)\operatorname{Im} \left( {\frac{{{{{\tilde {q}}}_{2}}}}{{{{{\tilde {\mu }}}_{2}}}}} \right)\frac{{{{{\left| q \right|}}^{2}}}}{{{{{\left| {{{Q}_{\mu }}} \right|}}^{2}}}}} \right]$$
(A.1)
$$ \times \;[\coth (\hbar {{\omega }_{ - }}{\text{/}}2{{T}_{2}}) - \coth (\hbar \omega {\text{/}}2{{T}_{1}})].$$

Here q = \(\sqrt {{{k}^{2}} - {{{(\omega {\text{/}}c)}}^{2}}} \), q1 = \(\sqrt {{{k}^{2}} - {{\varepsilon }_{1}}{{\mu }_{1}}{{{(\omega {\text{/}}c)}}^{2}}} \), q2 = \(\sqrt {{{k}^{2}} - {{\varepsilon }_{2}}{{\mu }_{2}}{{{(\omega {\text{/}}c)}}^{2}}} \), “tilde” means that arguments of the dielectric permittivities and magnetic permeabilities ε1, 2, μ1, 2 are taken at ω = ω – kxV, and

$$\begin{gathered} {{Q}_{e}} = (q + {{q}_{1}}{\text{/}}{{\varepsilon }_{1}})(q + {{{\tilde {q}}}_{2}}{\text{/}}{{{\tilde {\varepsilon }}}_{2}})\exp (ql) \\ - \;(q - {{q}_{1}}{\text{/}}{{\varepsilon }_{1}})(q - {{{\tilde {q}}}_{2}}{\text{/}}{{{\tilde {\varepsilon }}}_{2}})\exp ( - ql) \\ \end{gathered} $$

and the Qμ value is determined by the same expression with the replacement ε → μ. Formula (A.1) describes the frictional force acting on plate 1, moving in the direction of the x axis with a constant speed V. Its important features are the absence of the Fresnel reflection coefficients in an explicit form and the absence of the separation of the contributions of homogeneous and inhomogeneous modes on the axis of wave vectors. From (A.1), in the linear approximation in velocity at t1 = T2 = T, it follows (see (23) in [20])

$$\begin{gathered} {{F}_{x}} = \frac{{\hbar V}}{{2{{\pi }^{2}}}}\int\limits_0^\infty {d\omega \frac{{dn(\omega )}}{{d\omega }}} \\ \times \;\int {{{d}^{2}}kk_{x}^{2}\left[ {\operatorname{Im} \left( {\frac{{{{q}_{1}}}}{{{{\varepsilon }_{1}}}}} \right)\operatorname{Im} \left( {\frac{{{{q}_{2}}}}{{{{\varepsilon }_{2}}}}} \right)\frac{{{{{\left| q \right|}}^{2}}}}{{{{{\left| {{{Q}_{e}}} \right|}}^{2}}}}} \right.} \\ \left. { + \;\operatorname{Im} \left( {\frac{{{{q}_{1}}}}{{{{\mu }_{1}}}}} \right)\operatorname{Im} \left( {\frac{{{{q}_{2}}}}{{{{\mu }_{2}}}}} \right)\frac{{{{{\left| q \right|}}^{2}}}}{{{{{\left| {{{Q}_{\mu }}} \right|}}^{2}}}}} \right], \\ \end{gathered} $$
(A.2)

and for T1 = T2 = 0, respectively, is the expression for the quantum friction force [18, 20]

$$\begin{gathered} {{F}_{x}} = \frac{\hbar }{{4{{\pi }^{3}}}}\int\limits_{ - \infty }^{ + \infty } {d{{k}_{y}}\int\limits_0^\infty {d{{k}_{x}}{{k}_{x}}} } \\ \times \;\int\limits_0^{{{k}_{x}}V} {\exp ( - 2kl)\operatorname{Im} {{\Delta }_{{1\varepsilon }}}\operatorname{Im} {{{\tilde {\Delta }}}_{{2\varepsilon }}}{{{\left| {{{D}_{\varepsilon }}} \right|}}^{{ - 2}}} + (\varepsilon \to \mu ).} \\ \end{gathered} $$
(A.3)

Here Δiε = (εiqiqi)/(εiqi + qi), i = 1, 2, Dε = 1 – \({{\Delta }_{{1\varepsilon }}}{{\Delta }_{{2\varepsilon }}}\exp ( - 2kl)\), and for the corresponding magnetic contributions we should replace ε → μ. We note that in Section 3, the case of nonmagnetic materials when μ1, 2 = 1, is considered.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedkov, G.V., Kyasov, A.A. Quantum Friction and van der Waals Friction in Configuration Particle–Plate and Plate–Plate: Nonlocal Effects. Phys. Solid State 62, 1479–1486 (2020). https://doi.org/10.1134/S1063783420080107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420080107

Keywords:

Navigation