Skip to main content
Log in

AlGaN nanostructures with extremely high quantum yield at 300 K

  • Low Dimension Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Theoretical optimization of a quantum well heterostructure based on AlGaN solid solutions is implemented in order to attain the maximum charge carrier activation energy and the maximum exciton binding energy at a radiation wavelength of ~300 nm. An optimized structure sample with the radiative recombination dominating over the temperature range of 5 to 300 K and the room temperature internal quantum yield as high as 80% of the value measured at 5 K has been manufactured via plasma-assisted molecular beam epitaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. III-Nitride Ultraviolet Emitters: Technology and Applications, Ed. by M. Kneissl and, J. Rass (Springer-Verlag, Berlin, 2016).

  2. S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, et al., Nat. Mater. 5, 810 (2006).

    Article  ADS  Google Scholar 

  3. A. Pinos, V. Liuolia, S. Marcinkevicius, J. Yang, R. Gaska, and M. S. Shur, J. Appl. Phys. 109, 113516 (2011).

    Article  ADS  Google Scholar 

  4. Y. Iwata, T. Oto, D. Gachet, R. G. Banal, M. Funato, and Y. Kawakami, J. Appl. Phys. 117, 115702 (2015).

    Article  ADS  Google Scholar 

  5. D. Korakakis, K. F. Ludwig, and T. D. Moustakas, Appl. Phys. Lett. 71, 72 (1997).

    Article  ADS  Google Scholar 

  6. M. Gao, S. T. Bradley, Y. Cao, D. Jena, Y. Lin, S. A. Ringel, J. Hwang, W. J. Schaff, and L. J. Brillson, J. Appl. Phys. 100, 103512 (2006).

    Article  ADS  Google Scholar 

  7. A. Wise, R. Nandivada, B. Strawbridge, R. Carpenter, N. Newman, and S. Mahajan, Appl. Phys. Lett. 92, 261914 (2008).

    Article  ADS  Google Scholar 

  8. V. N. Jmerik, A. M. Mizerov, T. V. Shubina, A. V. Sakharov, A. A. Sitnikova, P. S. Kop’ev, S. V. Ivanov, E. V. Lutsenko, A. V. Danilchyk, N. V. Rzheutskii, and G. P. Yablonskii, Semiconductors 42 (12), 1420 (2008).

    Article  ADS  Google Scholar 

  9. A. A. Toropov, E. A. Shevchenko, T. V. Shubina, V. N. Jmerik, D. V. Nechaev, G. Pozina, P. Bergman, B. Monemar, S. Rouvimov, and S. V. Ivanov, Phys. Status Solidi C 13, 232 (2016).

    Article  Google Scholar 

  10. I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003).

    Article  ADS  Google Scholar 

  11. G. I. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974).

    Google Scholar 

  12. A. A. Toropov, E. A. Shevchenko, T. V. Shubina, V. N. Jmerik, D. V. Nechaev, M. A. Yagovkina, A. A. Sitnikova, S. V. Ivanov, G. Pozina, J. P. Bergman, and B. Monemar, J. Appl. Phys. 114, 124306 (2013).

    Article  ADS  Google Scholar 

  13. J. E. Northrup, C. L. Chua, Z. Yang, T. Wunderer, M. Kneissl, N. M. Johnson, and T. Kolbe, Appl. Phys. Lett. 100, 021101 (2012).

    Article  ADS  Google Scholar 

  14. B. Monemar, P. P. Paskov, J. P. Bergman, A. A. Toropov, and T. V. Shubina, Phys. Status Solidi B 244, 1759 (2007).

    Article  ADS  Google Scholar 

  15. V. N. Jmerik, A. M. Mizerov, D. V. Nechaev, P. A. Aseev, A. A. Sitnikova, S. I. Troshkov, P. S. Kop’ev, and S. V. Ivanov, J. Cryst. Growth 354, 188 (2012).

    Article  ADS  Google Scholar 

  16. D. V. Nechaev, P. A. Aseev, V. N. Jmerik, P. N. Brunkov, Y. V. Kuznetsova, A. A. Sitnikova, V. V. Ratnikov, and S. V. Ivanov, J. Cryst. Growth 378, 319 (2013).

    Article  ADS  Google Scholar 

  17. V. N. Jmerik, E. V. Lutsenko, and S. V. Ivanov, Phys. Status Solidi A 210, 439 (2013).

    Article  ADS  Google Scholar 

  18. M. Gurioli, A. Vinattieri, M. Colocci, C. Deparis, J. Massies, G. Neu, A. Bosacchi, and S. Franchi, Phys. Rev. B: Condens. Matter 44, 3115 (1991).

    Article  ADS  Google Scholar 

  19. B. K. Ridley, Phys. Rev. B: Condens. Matter 41, 12190 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Toropov.

Additional information

Original Russian Text © A.A. Toropov, E.A. Shevchenko, T.V. Shubina, V.N. Jmerik, D.V. Nechaev, G. Pozina, S.V. Ivanov, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 11, pp. 2180–2185.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toropov, A.A., Shevchenko, E.A., Shubina, T.V. et al. AlGaN nanostructures with extremely high quantum yield at 300 K. Phys. Solid State 58, 2261–2266 (2016). https://doi.org/10.1134/S1063783416110366

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416110366

Navigation