Skip to main content
Log in

Influence of high-temperature annealing on the orientation of the unipolarity vector in lead zirconate titanate thin films

  • Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The factors responsible for the change in the orientation of the natural unipolarity vector due to heating to the Curie temperature of a Pt/PZT/Pt thin-film capacitor (PZT—lead zirconate titanate) formed on a TiO2/SiO2/Si substrate have been considered. Lead zirconate titanate thin layers containing a small excess of lead oxide have been formed ex situ using high-frequency magnetron sputtering with a variation in the annealing temperature (crystallization of the perovskite phase) in the range from 580 to 650°C. It has been assumed that the reorientation of the unipolarity vector in the PZT layer is caused by the change in the mechanism of crystallization of the perovskite phase with an increase in the annealing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ijima, R. Takayama, Y. Tomita, and I. Ueda, J. Appl. Phys. 60, 2914 (1986).

    Article  ADS  Google Scholar 

  2. E. Sviridov, I. Sem, V. Alyoshin, S. Biryukov, and V. Dudkevich, Mater. Res. Soc. Symp. Proc. 361, 141 (1995).

    Article  Google Scholar 

  3. G. A. C. M. Spierings, G. J. M. Dormans, W. G. J. Moors, M. J. E. Ulenaers, and P. K. Larsen, J. Appl. Phys. 78, 1926 (1995).

    Article  ADS  Google Scholar 

  4. K. Abe, S. Komatsu, N. Yanase, K. Sano, and T. Kamakubo, Jpn. J. Appl. Phys., Part 136 (9B), 5846 (1997).

    Article  ADS  Google Scholar 

  5. E. G. Lee, J. S. Park, J. K. Lee, and J. G. Lee, Thin Solid Films 310, 327 (1997).

    Article  ADS  Google Scholar 

  6. A. L. Kholkin, K. G. Brooks, D. V. Taylor, S. Hiboux, and N. Setter, Integr. Ferroelectr. 22, 525 (1998).

    Article  Google Scholar 

  7. M. Kobune, H. Ishito, A. Mineshige, S. Fujii, R. Takayama, and A. Tomozawa, Jpn. J. Appl. Phys., Part 1 37 (9B), 5154 (1998).

    Article  Google Scholar 

  8. R. Bruchhaus, D. Pitzer, M. Schreiter, and W. Wersing, J. Electroceram. 3, 151 (1999).

    Article  Google Scholar 

  9. S. Okamura, S. Miyata, Y. Mizutani, T. Nishida, and T. Shiosaki, Jpn. J. Appl. Phys., Part 1 38 (9B), 5364 (1999).

    Article  Google Scholar 

  10. H. Fujusawa, S. Nakashima, K. Kaibara, M. Shimizu, and H. Niu, Jpn. J. Appl. Phys., Part 1 38 (9B), 5392 (1999).

    Article  Google Scholar 

  11. S. Hiboux and P. Muralt, Integr. Ferroelectr. 36, 83 (2001).

    Article  Google Scholar 

  12. I. P. Pronin, E. Yu. Kaptelov, E. A. Tarakanov, and V. P. Afanas’ev, Phys. Solid State 44 (9), 1736 (2002).

    Article  ADS  Google Scholar 

  13. G. Suchaneck, T. Sandner, A. Deineka, G. Gerlach, and L. Jastrabik, Ferroelectrics 289, 309 (2004).

    Article  Google Scholar 

  14. V. V. Shvartsman, A. V. Pankrashkin, V. P. Afanasjev, E. Yu. Kaptelov, I. P. Pronin, and A. L. Kholkin, Integr. Ferroelectr. 69, 103 (2005).

    Article  Google Scholar 

  15. A. A. Bogomolov, O. N. Sergeeva, D. A. Kiselev, E. Yu. Kaptelov, and I. P. Pronin, Tech. Phys. Lett. 31 (6), 468 (2005).

    Article  ADS  Google Scholar 

  16. Z. J. Wang, H. Kokawa, H. Takizawa, M. Ichiki, and R. Maeda, Appl. Phys. Lett. 86, 212903 (2005).

    Article  ADS  Google Scholar 

  17. V. P. Afanas’ev, I. P. Pronin, and A. L. Kholkin, Phys. Solid State 48 (6), 1214 (2006).

    Article  ADS  Google Scholar 

  18. B. E. Watts, Proc. Appl. Ceram. 3 (1–2), 97 (2009).

    Article  Google Scholar 

  19. E. C. Lima, E. B. Araújo, I. K. Bdikin, and A. L. Kholkin, Mater. Res. Bull. 47, 3548 (2012).

    Article  Google Scholar 

  20. X.-Y. Li, L. Chang, W.-X. Gao, G.-L. Yuan, J. Yin, and Z.-G. Liu, AIP Adv. 3, 122101 (2013).

    Article  ADS  Google Scholar 

  21. V. P. Pronin, S. V. Senkevich, E. Yu. Kaptelov, and I. P. Pronin, Phys. Solid State 55 (1), 105 (2013).

    Article  ADS  Google Scholar 

  22. J.-P. Chen, Y. Luo, Y. Ou, G.-L. Yuan, Y.-P. Wang, Y. Yang, J. Yin, and G.-G. Liu, J. Appl. Phys. 113, 204105 (2013).

    Article  ADS  Google Scholar 

  23. E. C. Lima, E. B. Araújo, I. K. Bdikin, and A. L. Kholkin, Ferroelectrics 465, 106 (2014).

    Article  Google Scholar 

  24. B. M. Darinskii, A. S. Sidorkin, L. P. Nesterenko, and A. A. Sidorkin, Phys. Solid State 57 (3), 549 (2015).

    Article  ADS  Google Scholar 

  25. V. V. Osipov, D. A. Kiselev, E. Yu. Kaptelov, S. V. Senkevich, and I. P. Pronin, Phys. Solid State 57 (9), 1793 (2015).

    Article  ADS  Google Scholar 

  26. F. T. Rogers, J. Appl. Phys. 27, 1066 (1956).

    Article  ADS  Google Scholar 

  27. V. G. Gavrilyachenko, V. P. Dudkevich, and E. G. Fesenko, Sov. Phys. Crystallogr. 13 (2), 277 (1968).

    Google Scholar 

  28. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London) 442, 759 (2006).

    Article  ADS  Google Scholar 

  29. N. Izyumskaya, Y.-I. Alivov, S.-J. Cho, H. Morkoç, H. Lee, and Y.-S. Kang, Crit. Rev. Solid State Mater. Sci. 32, 111 (2007).

    Article  ADS  Google Scholar 

  30. E. V. Bursian, O. I. Zaikovskii, and K. V. Makarov, Izv. Akad. Nauk SSSR, Ser. Fiz. 33, 1098 (1969).

    Google Scholar 

  31. A. Gruverman, B. J. Rodriguez, A. I. Kingon, R. J. Nemanich, A. K. Tagantsev, J. S. Cross, and M. Tsukada, Appl. Phys. Lett. 83, 728 (2003).

    Article  ADS  Google Scholar 

  32. Fundamentals of Silicon Integrated Device Technology, Vol. 1: Oxidation, Diffusion, and Epitaxy, Ed. by R. M. Burger and R. P. Donovan (Prentice-Hall, Upper Saddle River, New Jersey, 1967; Mir, Moscow, 1969).

  33. H. Watanabe, N. Yamada, and M. Okaji, Int. J. Thermophys. 25 (1), 221 (2004).

    Article  ADS  Google Scholar 

  34. I. P. Pronin, E. Yu. Kaptelov, N. G. Khosina, and V. P. Afanas’ev, Tech. Phys. Lett. 30 (3), 228 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Pronin.

Additional information

Original Russian Text © A.G. Kanareikin, E.Yu. Kaptelov, S.V. Senkevich, I.P. Pronin, A.Yu. Sergienko, O.N. Sergeeva, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 11, pp. 2242–2247.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanareikin, A.G., Kaptelov, E.Y., Senkevich, S.V. et al. Influence of high-temperature annealing on the orientation of the unipolarity vector in lead zirconate titanate thin films. Phys. Solid State 58, 2325–2330 (2016). https://doi.org/10.1134/S1063783416110147

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416110147

Navigation