Skip to main content
Log in

Calculation of thermodynamic potentials with the inclusion of fractional occupation numbers and investigation of FCC-BCC structural phase transitions in alkaline-earth metals

  • Metals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The smearing near the Fermi level has been taken into account in the calculations of the thermodynamic characteristics of metals in order to improve the convergence of the performed calculations and to increase the quality of the obtained results. The choice of the smearing parameter usually has not been explained, although the results of the calculations differ significantly for different values of this parameter. Possible schemes for calculating the thermodynamic potentials with the inclusion of the smearing parameter and additional parameters of the volume and energy shifts have been considered. The influence of these parameters on the calculations of the thermodynamic properties of alkaline-earth metals under pressure and on the description of the structural phase transition has been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  2. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  3. K.-M. Ho, C.-L. Fu, B. N. Harmon, W. Weber, and D. R. Hamann, Phys. Rev. Lett. 49, 673 (1982).

    Article  ADS  Google Scholar 

  4. C.-L. Fu and K.-M. Ho, Phys. Rev. B: Condens. Matter 28, 5480 (1983).

    Article  ADS  Google Scholar 

  5. R. J. Needs, R. M. Martin, and O. H. Nielsen, Phys. Rev. B: Condens. Matter 33, 3778 (1986).

    Article  ADS  Google Scholar 

  6. M. Weinert and J. V. Davenport, Phys. Rev. B: Condens. Matter 45, 13709 (1992).

    Article  ADS  Google Scholar 

  7. C. Elsässer, M. Fänle, C. T. Chan, and K. M. Ho, Phys. Rev. B: Condens. Matter 49, 13975 (1994).

    Article  ADS  Google Scholar 

  8. M. Springborg, R. C. Albers, and K. Schmidt, Phys. Rev. B: Condens. Matter 57, 1427 (1998).

    Article  ADS  Google Scholar 

  9. F. Wagner, Th. Laloyax, and M. Scheffler, Phys. Rev. B: Condens. Matter 57, 2102 (1998).

    Article  ADS  Google Scholar 

  10. M. Methfessel and A. T. Paxton, Phys. Rev. B: Condens. Matter 40, 3616 (1989).

    Article  ADS  Google Scholar 

  11. P. Giannozzi, S. Baroni, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, Ch. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Uniari, and R. M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009); arXiv: 0906.2569, http://www.pwscf.org/.

    Article  Google Scholar 

  12. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  13. D. Vanderbilt, Phys. Rev. B: Condens. Matter 41, 7892 (1990).

    Article  ADS  Google Scholar 

  14. N. Marzari, PhD Thesis (University of Cambridge, Cambridge, 1996).

  15. N. Marzari, D. Vanderbilt, A. De Vita, and M. C. Payne, Phys. Rev. Lett. 82, 3296 (1999).

    Article  ADS  Google Scholar 

  16. H. J. Monkhorst and J. D. Pack, Phys. Rev. B: Solid State 13, 5188 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  17. F. D. Murnaghan, Am. J. Math. 49, 235 (1937).

    Article  MathSciNet  Google Scholar 

  18. F. D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. F. Birch, Phys. Rev. 71, 809 (1947).

    Article  ADS  MATH  Google Scholar 

  20. F. Birch, J. Geophys. Res. 83, 1257 (1978).

    Article  ADS  Google Scholar 

  21. M. S. Anderson, C. A. Swenson, and D. T. Peterson, Phys. Rev. B: Condens. Matter 41, 3329 (1990).

    Article  ADS  Google Scholar 

  22. Mineral Physics and Crystallography: A Handbook of Physical Constants, Ed. by T. J. Ahrens (American Geophysical Union, Washington, 1995).

    Google Scholar 

  23. P. W. Bridgman, Proc. Am. Acad. Arts Sci. 72, 207 (1938).

    Article  Google Scholar 

  24. A. Jayaraman, W. Klement, and G. C. Kennedy, Phys. Rev. 132, 1620 (1963).

    Article  ADS  Google Scholar 

  25. E. Yu. Tonkov, Phase Transformations of Elements Under High Pressure (Nauka, Moscow, 1979; CRC Press, Boca Raton, Florida, United States, 2004).

    Google Scholar 

  26. H. Olijnyk and W. B. Holzapfel, Phys. Lett. A 100, 191 (1984).

    Article  ADS  Google Scholar 

  27. A. R. Oganov, J. P. Brodholt, and G. D. Price, Earth Planet Sci. Lett. 184, 555 (2001).

    Article  ADS  Google Scholar 

  28. A. van de Walle and G. Ceder, Phys. Rev. B: Condens. Matter 59, 14 992 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Pozhivatenko.

Additional information

Original Russian Text © V.V. Pozhivatenko, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 10, pp. 1879–1886.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozhivatenko, V.V. Calculation of thermodynamic potentials with the inclusion of fractional occupation numbers and investigation of FCC-BCC structural phase transitions in alkaline-earth metals. Phys. Solid State 55, 1991–2000 (2013). https://doi.org/10.1134/S1063783413100260

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413100260

Keywords

Navigation