Skip to main content
Log in

Filament Formation Mechanism for a Nanosecond Surface Barrier Discharge of Positive Polarity in Nitrogen

  • PLASMA DYNAMICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The development of a surface barrier discharge in nitrogen containing 0.1 wt % of O2 impurity is numerically simulated in a 2D model of a continuous medium under conditions of a pressure in the range of 2–8 atm and positive step voltage pulse amplitudes of 20–50 kV. The development of a thin plasma layer with a density that increases with time is noticed at a voltage of 40 kV and nitrogen pressures above 4 atm. This layer is a filament that develops at the streamer boundary that faces the dielectric and moves toward the dielectric surface with time. It is shown that the reason for the development of the filament is stepwise ionization from the excited states of the nitrogen molecule. A criterion for the appearance of the filament is proposed that agrees with the experimental data at the qualitative level, according to which the threshold voltage for this phenomenon decreases with increasing pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. K. D. Bayoda, N. Benard, and E. Moreau, J. Appl. Phys. 118, 063301 (2015).

  2. A. Y. Starikovskii, A. A. Nikipelov, M. M. Nudnova, and D. V. Roupassov, Plasma Sources Sci. Technol. 18, 034015 (2009).

  3. A. Starikovskiy and N. Aleksandrov, Prog. Energy Combust. Sci. 39, 61 (2013).

    Article  Google Scholar 

  4. S. M. Starikovskaia, J. Phys. D: Appl. Phys. 47, 353001 (2014).

  5. S. A. Stepanyan, A. Yu. Starikovskiy, N. A. Popov, and S. M. Starikovskaia, Plasma Sources Sci. Technol. 23, 045003 (2014).

  6. S. A. Shcherbanev, C. Ding, S. M. Starikovskaia, and N. A. Popov, Plasma Sources Sci. Technol. 28, 065013 (2019).

  7. C. Ding, A. Yu. Khomenko, S. A. Shcherbanev, and S. M. Starikovskaia, Plasma Sources Sci. Technol. 28, 085005 (2019).

  8. S. A. Shcherbanev, N. A. Popov, and S. M. Starikovskaia, Combust. Flame 176, 272 (2017).

    Article  Google Scholar 

  9. V. R. Soloviev, E. M. Anokhin, and N. L. Aleksandrov, Plasma Sources Sci. Technol. 29, 035006 (2020).

  10. V. R. Soloviev and V. M. Krivtsov, J. Phys. D: Appl. Phys. 42, 125208 (2009).

  11. V. R. Soloviev and V. M. Krivtsov, Plasma Sources Sci. Technol. 27, 114001 (2018).

  12. G. Wormeester, S. Pancheshnyi, A. Luque, S. Nijdam, and U. Ebert, J. Phys. D: Appl. Phys. 43, 505201 (2010).

  13. M. B. Zheleznyak, A. Kh. Mnatsakanyan and S. V. Sizykh, High Temp. 20, 357 (1982).

    ADS  Google Scholar 

  14. N. A. Dyatko, I. V. Kochetov, and A. P. Napartovich, Plasma Phys. Rep. 18, 462 (1992).

    Google Scholar 

  15. G. E. Georghiou, A. P. Papadakis, R. Morrow, and A. C. Metaxas, J. Phys. D: Appl. Phys. 38, R303 (2005).

    Article  ADS  Google Scholar 

  16. I. A. Kossyi, A. Yu. Kostinsky, A. A. Matveyev, and V. P. Silakov, Plasma Sources Sci. Technol. 1, 207 (1992).

    Article  ADS  Google Scholar 

  17. N. L. Aleksandrov, A. E. Bazelyan, E. M. Bazelyan, and I. V. Kochetov, Plasma Phys. Rep. 21, 57 (1995).

    ADS  Google Scholar 

  18. J. Bacri and A. Medani, Physica B + C 112, 101 (1982).

    Article  ADS  Google Scholar 

  19. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Sov. Phys.–JETP 29, 1070 (1969).

    ADS  Google Scholar 

  20. B. M. Smirnov, Ions and Excited Atoms in Plasma (Atomizdat, Moscow, 1974), pp. 264, 271 [in Russian].

  21. V. R. Soloviev and V. M. Krivtsov, J. Phys.: Conf. Ser. 927, 012059 (2017).

  22. B. M. Smirnov, Ions and Excited Atoms in Plasma (A-tomizdat, Moscow, 1974), p. 203 [in Russian].

    Google Scholar 

  23. N. D. Lepikhin, A. V. Klochko, N. A. Popov, and S. M. Starikovskaia, Plasma Sources Sci. Technol. 25, 045003 (2016).

  24. N. D. Lepikhin, N. A. Popov, and S. M. Starikovskaia, Plasma Sources Sci. Technol. 27, 055005 (2018).

Download references

ACKNOWLEDGMENTS

The author is grateful to N.A. Popov for his support of this study and enlightening comments.

Funding

This study was supported by the Russian Science Foundation (grant no. 22-29-00084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Soloviev.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soloviev, V.R. Filament Formation Mechanism for a Nanosecond Surface Barrier Discharge of Positive Polarity in Nitrogen. Plasma Phys. Rep. 48, 669–681 (2022). https://doi.org/10.1134/S1063780X22600311

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22600311

Keywords:

Navigation