Skip to main content
Log in

Distinctive Features of the Structure of Current Sheets Formed in Plasma in Three-Dimensional Magnetic Configurations with an X line (a Review)

  • APPLIED PHYSICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A review is presented of experimental results of the studies of the distinctive features of the structure and evolution of plasma current sheets that are formed in three-dimensional (3D) magnetic configurations with an X line in the presence of a longitudinal magnetic field component (guide field) directed along the X line. It is shown that, during the development of the current sheet, the longitudinal component of the guide field increases within the sheet. The excess guide field is sustained by the plasma currents that flow in the transverse plane with respect to the main current in the sheet, and as a result, the current structure becomes three-dimensional. When the guide field increases, the degree of compression into the sheet decreases, both of the electric current and the plasma, which is caused by the change in the balance of pressures in the sheet with the appearance of excess guide field. The deformation of plasma current sheets, and in particular, the appearance of asymmetrical and tilted current sheets in 3D magnetic configurations results from the excitation of Hall currents and their interaction with the guide field. It is shown that the formation of current sheets in 3D magnetic configurations with an X line is possible in a relatively wide but limited range of initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. S. I. Syrovatskii, Annu. Rev. Astron. Astrophys. 19, 163 (1981).

    Article  ADS  Google Scholar 

  2. D. Biscamp, Magnetic Reconnection in Plasmas (Cambridge Univ. Press, Cambridge, 2005).

    Google Scholar 

  3. E. R. Priest and T. Forbes, Magnetic Reconnection (Cambridge Univ. Press, Cambridge, 2000).

    Book  Google Scholar 

  4. B. B. Kadomtsev, Rep. Prog. Phys. 50, 115 (1987).

    Article  ADS  Google Scholar 

  5. A. G. Frank, Plasma Phys. Control. Fusion. 41, A687 (1999).

    Article  ADS  Google Scholar 

  6. S. Y. Bogdanov, N. P. Kyrie, V. S. Markov, and A. G. Frank, JETP Lett. 71, 53 (2000).

    Article  ADS  Google Scholar 

  7. A. G. Frank and S. Yu. Bogdanov, Earth, Planets Space 53, 531 (2001).

    Article  ADS  Google Scholar 

  8. S. Yu. Bogdanov, V. S. Markov, A. G. Frank, G. V. Dreiden, I. I. Komissarova, G. V. Ostrovskaya, and E. N. Shedova, Plasma Phys. Rep. 28, 549 (2002).

    Article  ADS  Google Scholar 

  9. A. G. Frank, S. Yu. Bogdanov, N. P. Kyrie, and V. S. Markov, AIP Conf. Proc. 703, 431 (2004).

    Article  ADS  Google Scholar 

  10. A. G. Frank, S. Yu. Bogdanov, V. S. Markov, G. V. Dreiden, and G. V. Ostrovskaya, Phys. Plasmas 12, 052316 (2005).

  11. S. Yu. Bogdanov, V. B. Burilina, and A. G. Frank, J. Exp. Theor. Phys. 87, 655 (1998).

    Article  ADS  Google Scholar 

  12. A. G. Frank, Phys.–Usp. 53, 941 (2010).

    Article  Google Scholar 

  13. S. Yu. Bogdanov, S. G. Bugrov, V. P. Gritsyna, O. V. Zverev, G. V. Karpov, V. S. Markov, D. V. Repin, and A. G. Frank, Plasma Phys. Rep. 33, 435 (2007).

    Article  ADS  Google Scholar 

  14. A. G. Frank, S. G. Bugrov, and V. S. Markov, Phys. Plasmas 15, 092102 (2008).

  15. A. G. Frank, S. G. Bugrov, and V. S. Markov, Phys. Lett. A 373, 1460 (2009).

    Article  ADS  Google Scholar 

  16. A. G. Frank and S. N. Satunin, Plasma Phys. Rep. 37, 829 (2011).

    Article  ADS  Google Scholar 

  17. A. G. Frank and S. N. Satunin, JETP Lett. 100, 75 (2014).

    Article  ADS  Google Scholar 

  18. S. Yu. Bogdanov, G. V. Dreiden, V. S. Markov, G. V. Ostrovskaya, and A. G. Frank, Plasma Phys. Rep. 32, 1034 (2006).

    Article  ADS  Google Scholar 

  19. A. G. Frank, S. Yu. Bogdanov, G. V. Dreiden, V. S. Markov, and G. V. Ostrovskaya, Phys. Lett. A 348, 318 (2006).

    Article  ADS  Google Scholar 

  20. S. Yu. Bogdanov, G. V. Dreiden, N. P. Kyrie, V. S. Markov, G. V. Ostrovskaya, and A. G. Frank, Plasma Phys. Rep. 33, 930 (2007).

    Article  ADS  Google Scholar 

  21. G. V. Ostrovskaya and A. G. Frank, Plasma Phys. Rep. 40, 21 (2014).

    Article  ADS  Google Scholar 

  22. G. S. Voronov, N. P. Kyrie, V. S. Markov, G. V. Ostrovskaya, and A. G. Frank, Plasma Phys. Rep. 34, 999 (2008).

    Article  ADS  Google Scholar 

  23. A. G. Frank, N. P. Kyrie, and S. N. Satunin, Phys. Plasmas 18, 111209 (2011).

  24. N. P. Kyrie, V. S. Markov, A. G. Frank, D. G. Vasilkov, and E. V. Voronova, Plasma Phys. Rep. 42, 549 (2016).

    Article  ADS  Google Scholar 

  25. S. I. Syrovatskii, A. G. Frank, and A. Z. Khodzhaev, JETP Lett. 15, 94 (1972).

    ADS  Google Scholar 

  26. A. G. Frank and S. N. Satunin, Plasma Phys. Rep. 44, 190 (2018).

    Article  ADS  Google Scholar 

  27. S. Yu. Bogdanov, G. V. Dreiden, N. P. Kyrie, I. I. Komissarova, V. S. Markov, G. V. Ostrovskaya, Yu. I. Ostrovskii, V. N. Philippov, A. G. Frank, A. Z. Khodzhaev, and E. N. Shedova, Sov. J. Plasma Phys. 18, 654 (1992).

    Google Scholar 

  28. S. Yu. Bogdanov, Yu. F. Bondar, V. B. Burilina, N. P. Kyrie, V. S. Markov, G. P. Mkheidze, A. A. Savin, and A. G. Frank, Tech. Phys. 39, 877 (1994).

    Google Scholar 

  29. A. G. Frank, S. Yu. Bogdanov, V. B. Burilina, N. P. Kyrie, and V. S. Markov, Contrib. Plasma Phys. 40, 106 (2000).

    Article  ADS  Google Scholar 

  30. A. G. Frank, A. V. Artemyev, and L. M. Zelenyi, J. Exp. Theor. Phys. 123, 699 (2016).

    Article  ADS  Google Scholar 

  31. A. G. Frank, G. V. Ostrovskaya, E. V. Yushkov, A. V. Artemyev, and S. N. Satunin, Cosmic Res. 55, 46 (2017).

    Article  ADS  Google Scholar 

  32. E. V. Yushkov, A. G. Frank, A. V. Artemyev, A. A. Petrukovich, and R. Nakamura, Plasma Phys. Rep. 44, 1126 (2018).

    Article  ADS  Google Scholar 

  33. A. G. Frank and S. N. Satunin, Bull. Lebedev Phys. Inst. 47, 54 (2020).

    Article  ADS  Google Scholar 

  34. A. G. Frank and S. N. Satunin, JETP Lett. 112, 623 (2020).

    Article  ADS  Google Scholar 

  35. A. G. Frank, N. P. Kyrie, S. N. Satunin, and S. A. Savinov, Universe 7, 400 (2021).

    Article  ADS  Google Scholar 

  36. A. G. Frank and S. N. Satunin, Plasma Phys. Rep. 48, 10 (2022).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

To conclude, the author would like to express her gratitude to S.A. Savinov for useful discussions and his help in preparing this article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Frank.

Ethics declarations

The author declares no conflict of interest.

Additional information

Translated by E. Voronova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, A.G. Distinctive Features of the Structure of Current Sheets Formed in Plasma in Three-Dimensional Magnetic Configurations with an X line (a Review). Plasma Phys. Rep. 48, 574–584 (2022). https://doi.org/10.1134/S1063780X22200144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22200144

Keywords:

Navigation