Skip to main content
Log in

Simulations of the Formation of Nitrogen Oxides at the Cooling Stage of a Subthreshold Microwave Discharge in Air with Admixtures of Methane

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract—

Studies of the composition of the products of chemical reactions in the afterglow of a new type of atmospheric discharge, the microwave self-non-self-sustained discharge in air with admixtures of methane, were carried out. A detailed kinetic model was developed that describes the kinetics of reactions with polyatomic nitrogen oxides at the stage of intensive cooling of the discharge channel. It was found that the formation of nitrogen oxide NO depends on the percentage of the products of the methane molecule dissociation in the nitrogen–oxygen mixture that, initially, is atomic. The new discharge type can be used for the plasmachemical processing of gaseous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. G. M. Batanov, S. I. Gritsinin, I. A. Kossyi, A. N. Magunov, V. P. Silakov, and N. M. Tarasova, in Plasma Physics and Plasma Electronics, Ed. by L. M. Kovrizhnykh (Nauka, Moscow, 1985; Nova Science, Commack, NY, 1985).

  2. G. M. Batanov, S. I. Gritsinin, and I. A. Kossyi, J. Phys. D: Appl. Phys. 35, 2687 (2002).

    Article  ADS  Google Scholar 

  3. I. A. Kossyi, in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2006, Paper AIAA-2006-1457.

  4. G. M. Batanov, N. K. Berezhetskaya, A. M. Davydov, E. M. Konchekov, I. N. Katorgin, I. A. Kossyi, K. A. Sarksyan, V. D. Stepakhin, S. M. Temchin, and N. K. Kharchev, Prikl. Fiz., No. 5, 10 (2017).

  5. K. V. Artem’ev, G. M. Batanov, N. K. Berezhetskaya, A. M. Davydov, I. A. Kossyi, V. I. Nefedov, K. A. Sarksyan, and N. K. Kharchev, Usp. Prikl. Fiz. 5, 429 (2017).

    Google Scholar 

  6. K. V. Artem’ev, G. M. Batanov, N. K. Berezhetskaya, A. M. Davydov, L. V. Kolik, E. M. Konchekov, I. A. Kossyi, A. E. Petrov, K. A. Sarksyan, V. D. Stepakhin, and N. K. Kharchev, Plasma Phys. Rep. 44, 1146 (2018).

    Article  ADS  Google Scholar 

  7. K. V. Artem’ev, G. M. Batanov, N. K. Berezhetskaya, V. D. Borzosekov, S. I. Gritsinin, A. M. Davydov, L. V. Kolik, E. M. Konchekov, I. A. Kossyi, Yu. A. Lebedev, I. V. Moryakov, A. E. Petrov, K. A. Sarksyan, V. D. Stepakhin, N. K. Kharchev, et al., Plasma Phys. Rep. 46, 311 (2020).

    Article  ADS  Google Scholar 

  8. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

  9. V. K. Zhivotov, B. V. Potapkin, and V. D. Rusanov, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov, Ser. B, Vol. VIII-1: Chemistry of Low-Temperature Plasma, Ed. by Yu. A. Lebedev, N. A. Plate, and V. E. Fortov (Yanus-K, Moscow, 2005), p. 4 [in Russian].

  10. A. S. Zarin, A. A. Kuzovnikov, and V. M. Shibkov, Freely Localized Microwave Discharge in Air (Neft’ i Gaz, Moscow, 1996) [in Russian].

  11. Yu. A. Lebedev, Plasma Sources Sci. Technol. 24, 053001 (2015).

  12. K. V. Aleksandrov, L. P. Grachev, I. I. Esakov, S. M. Pokras, and K. V. Khodataev, Tech. Phys. 48, 43 (2003).

    Article  Google Scholar 

  13. A. L. Vikharev and O. A. Ivanov, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov, Ser. B, Vol. VIII-1: Chemistry of Low-Temperature Plasma, Ed. by Yu. A. Lebedev, N. A. Plate, and V. E. Fortov (Yanus-K, Moscow, 2005), p. 356 [in Russian].

  14. Yu. A. Lebedev, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov, Ser. B, Vol. VIII-1: Chemistry of Low-Temperature Plasma, Ed. by Yu. A. Lebedev, N. A. Plate, and V. E. Fortov (Yanus-K, Moscow, 2005), p. 435 [in Russian].

  15. A. V. Kim and G. M. Fraiman, Sov. J. Plasma Phys. 9, 358 (1983).

    ADS  Google Scholar 

  16. I. A. Kossyi, A. Yu. Kostinsky, A. A. Matveyev, and V. P. Silakov, Plasma Sources Sci. Technol. 1, 207 (1992).

    Article  ADS  Google Scholar 

  17. R. Kh. Amirov and E. A. Filimonova, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov, Ser. B, Vol. VIII-1: Chemistry of Low-Temperature Plasma, Ed. by Yu. A. Lebedev, N. A. Plate, and V. E. Fortov (Yanus-K, Moscow, 2005), p. 463 [in Russian].

  18. R. Kh. Amirov and E. A. Filimonova, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov, Ser. B, Vol. VIII-1: Chemistry of Low-Temperature Plasma, Ed. by Yu. A. Lebedev, N. A. Plate, and V. E. Fortov (Yanus-K, Moscow, 2005), p. 502 [in Russian].

  19. L. V. Gurvich, I. V. Veits, B. A. Medvedev, G. A. Khachkuruzov, V. S. Yungman, G. A. Bergman, V. F. Baibuz, V. S. Iorish, G. N. Yurkov, S. I. Gorbov, L. F. Kuratova, N. P. Rtishcheva, I. N. Przheval’skii, V. Yu. Zitserman, V. Ya. Leonidov, et al., Thermodynamic Properties of Individual Substances. Reference Book (Nauka, Moscow, 1978–1982), Vols. 1−4 [in Russian].

  20. M. Capitelli, C. M. Ferreira, B. F. Gordiets, and A. I. Osipov, Plasma Kinetics in Atmospheric Gases (Springer-Verlag, Berlin, 2000).

    Book  Google Scholar 

  21. B. F. Gordiets, C. M. Ferreira, V. L. Guerra, J. Loureiro, J. Nahormy, D. Pagnon, M. Touzeau, and M. Vialle, IEEE Trans. Plasma Sci. 23, 750 (1995).

    Article  ADS  Google Scholar 

  22. N. A. Popov, Doctoral Dissertation in Physics and Mathematics (Skobeltsyn Institute of Nuclear Physics of Moscow State University, Moscow, 2009).

  23. N. L. Aleksandrov, F. I. Vysikailo, R. Sh. Islamov, I. V. Kochetov, A. P. Napartovich, and V. G. Pevgov, High Temp. 19, 342 (1981).

    Google Scholar 

  24. Yu. S. Akishev, A. A. Deryugin, V. B. Karal’nik, I. V. Kochetov, A. P. Napartovich, and N. I. Trushkin, Plasma Phys. Rep. 20, 511 (1994).

    ADS  Google Scholar 

  25. I. V. Kochetov, E. V. Mishin, and V. A. Telegin, Sov. Phys.–Dokl. 31, 990 (1986).

    ADS  Google Scholar 

  26. N. G. Dautov and A. M. Starik, Kinet. Katal. 38 (2), 207 (1997).

    Google Scholar 

  27. L. S. Polak, M. Ya. Gol’denberg, and A. A. Levitskii, Computational Methods in Chemical Kinetics (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  28. Yu. K. Karasevich, Doctoral Dissertation in Physics and Mathematics (Semenov Institute of Chemical Physics, Moscow, 2007).

  29. N. M. Marinov, W. J. Pitz, C. K. Westbrook, M. Hori, and N. Matsunaga, Proc. Combust. Inst. 27, 389 (1998).

    Article  Google Scholar 

  30. Nonequillibrium Physicochemical Processes in Gas Flows and New Principles of Combustion Organization, Ed. by A. M. Starik (Torus, Moscow, 2011) [in Russian].

    Google Scholar 

  31. V. P. Agafonov, V. K. Vertushkin, A. A. Gladkov, and O. Yu. Polyanskii, Nonequillibrium Physicochemical Processes in Aerodynamics (Mashinostroenie, Moscow, 1972) [in Russian].

    Google Scholar 

  32. O. E. Krivonosova, S. A. Losev, V. P. Nalivaiko, Yu. K. Mukoseev, and O. P. Shatalov, in Plasma Chemistry, Ed. by B. M. Smirnov (Energoatomizdat, Moscow, 1987), Vol. 14, p. 3 [in Russian].

    Google Scholar 

  33. Handbook of Physiochemical Processes in Gas Dynamics, Vol. 1: Dynamics of Physiochemical Processes in Gases and Plasmas, Ed. by G. G. Chernyi and S. A. Losev (Mosk. Gos. Univ., Moscow, 1995) [in Russian].

    Google Scholar 

  34. Handbook of Physiochemical Processes in Gas Dynamics, Vol. 2: Physicochemical Kinetics and Thermodynamics, Ed. by G. G. Chernyi and S. A. Losev (Scientific Publishing Center of Mechanics, Moscow, 2002) [in Russian].

    Google Scholar 

  35. N. G. Dautov and A. M. Starik, High Temp. 31, 253 (1993).

    Google Scholar 

  36. D. J. Kewley and H. G. Hornung, Chem. Phys. Lett. 25, 531 (1974).

    Article  ADS  Google Scholar 

  37. RRATE Database on Chemical Kinetics (AVOGADRO Center, Institute of Mechanics, Moscow State University, Moscow, 1992).

  38. J. Heimerl and T. P. Coffee, Combust. Flame 35, 117 (1979).

    Article  Google Scholar 

  39. S. Toby and E. Ullrich, Int. J. Chem. Kinet. 12, 535 (1980).

    Article  Google Scholar 

  40. D. L. Baulch, D. D. Drysdale, J. Duxbary, and S. L. Grant, Evaluated Kinetic Data for High Temperature Reactions, Vol. 3: Homogeneous Gas Phase Reactions of O 2 –O 3 Systems, the CO–O 2 –H 2 System and of Sulphur-Containing Species (Butterworths, London, 1976).

  41. D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, J. Troe, and R. T. Watson, J. Phys. Chem. Ref. Data 13, 1259 (1984).

    Article  ADS  Google Scholar 

  42. D. L. Baulch, D. D. Drysdale, and D. C. Horne, Evaluated Kinetic Data for High Temperature Reactions, Vol. 2: Homogeneous Gas Phase Reactions of the H 2 –N 2 –O 2 System (Butterworths, London, 1973).

  43. K. L. Wray and J. D. Teare, J. Chem. Phys. 36, 2582 (1962).

    Article  ADS  Google Scholar 

  44. M. Koshi, S. Bando, M. Saito, and T. Asaba, in Proceedings of the 17th Symposium (International) on Combustion, Pittsburgh, 1979, Symp. (Int.) Combust., [Proc.] 17, 553 (1979).

  45. D. L. Baulch, R. A. Cox, P. J. Crutzen, R. F. Hampson, J. A. Kerr, J. Troe, and R. T. Watson, J. Phys. Chem. Ref. Data 11, 327 (1982).

    Article  ADS  Google Scholar 

  46. S. W. Benson, D. Golden, R. W. Lawrence, R. Shaw, and R. W. Woolfolk, in Proceedings of the Symposium on Chemical Kinetics Data for the Upper and Lower Atmosphere, Warrenton, 1974, Int. J. Chem. Kinet.: Symp., No. 1, 399 (1975).

  47. I. S. Zaslonko and Yu. K. Mukoseev, Khim. Fiz., No. 11, 1508 (1982).

  48. J. Troe, Ber. Bunsen-Ges. Phys. Chem. 73, 906 (1969).

    Google Scholar 

  49. L. F. Phillips and H. I. Schiff, J. Chem. Phys. 42, 3171 (1965).

    Article  ADS  Google Scholar 

  50. Y. Ono and M. A. A. Cline, Chem. Phys. 69, 381 (1982).

    Article  Google Scholar 

  51. M. J. McEwan and L. F. Phillips, Chemistry of the Atmosphere (Halsted, New York, 1975).

    Google Scholar 

  52. Yu. K. Mukoseev and I. S. Zaslonko, Khim. Fiz., No. 1, 66 (1983).

  53. D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, J. Troe, and R. T. Watson, J. Phys. Chem. Ref. Data 13, 1259 (1984).

    Article  ADS  Google Scholar 

  54. D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, J. Troe, and R. T. Watson, J. Phys. Chem. Ref. Data 9, 295 (1980).

    Article  ADS  Google Scholar 

  55. J. Troe, J. Chem. Phys. 66, 4758 (1977).

    Article  ADS  Google Scholar 

  56. S. Mukkavilli, C. K. Lee, K. Varghese, and L. L. Tavlarides, IEEE Trans. Plasma Sci. 16, 652 (1988).

    Article  ADS  Google Scholar 

  57. R. A. Graham and H. S. Johnston, J. Phys. Chem. 82, 254 (1978).

    Article  Google Scholar 

  58. L. G. Piper, R. Krech, and R. L. Taylor, J. Chem. Phys. 75, 2099 (1979).

    Article  ADS  Google Scholar 

  59. M. J. McEwan and L. F. Phillips, Chemistry of the Atmosphere (Halsted, New York, 1975).

    Google Scholar 

  60. A. A. Gvozdev, V. B. Nesterenko, G. V. Nichipor, and V. V. Trubnikov, Vestsi Akad. Navuk B. SSR, Ser. Fiz.-Tekh. Navuk, No. 2, 68 (1979).

    Google Scholar 

  61. I. S. Zaslonko, A. M. Tereza, O. N. Kulish, and D. Yu. Zhukov, Khim. Fiz., No. 11, 1491 (1992).

  62. W. Tsang and R. F. Hampson, J. Phys. Chem. Ref. Data 15, 1087 (1986).

    Article  ADS  Google Scholar 

  63. D. A. Masten, R. K. Hanson, and C. T. Bowman, J. Phys. Chem. 94, 7119 (1990).

    Article  Google Scholar 

  64. R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr, and J. Troe, J. Phys. Chem. Ref. Data 21, 1125 (1992).

    Article  ADS  Google Scholar 

  65. M. W. Markus, D. Woiki, and P. Roth, in Proceedings of the 24th Symposium (International) on Combustion, Pittsburgh, 1992, Symp. (Int.) Combust., [Proc.] 24, 581 (1992).

  66. M. Röhrig, E. L. Petersen, D. F. Davidson, R. K. Hanson, and C. T. Bowman, Int. J. Chem. Kinet. 29, 781 (1997).

    Article  Google Scholar 

  67. D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, J. Phys. Chem. Ref. Data 23, 847 (1994).

    Article  ADS  Google Scholar 

  68. A. Fahr, A. Laufer, R. Klein, and W. Braun, J. Phys. Chem. 95, 3218 (1991).

    Article  ADS  Google Scholar 

  69. H. Wang and M. Frenklach, Combust. Flame 110, 173 (1997).

    Article  Google Scholar 

  70. A. G. Zborovskii, Yu. P. Petrov, A. M. Tereza, and A. N. Tyurin, Khim. Fiz., No. 5, 1582 (1990).

  71. R. D. Wilk, N. P. Cernansky, W. J. Pitz, and C. K. Westbrook, Combust. Flame 77, 145 (1989).

    Article  Google Scholar 

  72. Y. Hidaka, T. Taniguchi, H. Tanaka, T. Kamesawa, K. Inami, and H. Kawano, Combust. Flame 92, 365 (1993).

    Article  Google Scholar 

  73. R. S. Timonen, E. Ratajczak, D. Gutman, and A. F. Wagner, J. Phys. Chem. 91, 5325 (1987).

    Article  Google Scholar 

  74. M. Klatt, M. Röhrig, and H. Gg. Wagner, Ber. Bunsen-Ges. Phys. Chem. 95, 1163 (1991).

    Article  Google Scholar 

  75. A. M. Dean and P. R. Westmoreland, Int. J. Chem. Kinet. 19, 207 (1987).

    Article  Google Scholar 

  76. F. Glarborg, J. A. Miller, and R. J. Kee, Combust. Flame 65, 177 (1986).

    Article  Google Scholar 

  77. Y. Hidaka, T. Oki, H. Kawano, and T. Higashihara, J. Phys. Chem. 93, 7134 (1989).

    Article  Google Scholar 

  78. W. Tsang, J. Phys. Chem. Ref. Data 16, 471 (1987).

    Article  ADS  Google Scholar 

  79. Y. Hidaka, T. Nishimori, K. Sato, Y. Henmi, R. Okuda, K. Inami, and T. Higashihara, Combust. Flame 117, 755 (1999).

    Article  Google Scholar 

  80. J. A. Miller and C. F. Melius, in Proceedings of the 22nd Symposium (International) on Combustion, Pittsburgh, 1989, Symp. (Int.) Combust., [Proc.] 22, 1031 (1989).

  81. P. Frank, K. A. Bhaskaran, and Th. Just, in Proceedings of the 21st Symposium (International) on Combustion, Pittsburgh, 1988, Symp. (Int.) Combust., [Proc.] 21, 885 (1988).

  82. J. A. Miller, R. E. Mitchell, M. D. Smooke, and R. J. Kee, in Proceedings of the 19th Symposium (International) on Combustion, Pittsburgh, 1982, Symp. (Int.) Combust., [Proc.] 19, 181 (1982).

  83. P. Frank, K. A. Bhaskaran, and Th. Just, J. Phys. Chem. 90, 2226 (1986).

    Article  Google Scholar 

  84. P. Frank and Th. Just, in Proceedings of the 14th International Symposium on Shock Tubes and Waves, Sydney, 1984, Proc. Int. Sump. Shock Tubes Waves, 706 (1984).

  85. Ch. Dombrowsky and H. Gg. Wagner, Ber. Bunsen-Ges. Phys. Chem. 96, 1048 (1992).

    Article  Google Scholar 

  86. A. M. Dean, J. Phys. Chem. 89, 4600 (1985).

    Article  Google Scholar 

  87. S. C. Li and F. A. Williams, in Proceedings of the 26th Symposium (International) on Combustion, Pittsburgh, 1996, Symp. (Int.) Combust., [Proc.] 26, 1017 (1996).

  88. M. Bartels, J. Edelbuttel-Einhaus, and K. Hoyermann, in Proceedings of the 23rd Symposium (International) on Combustion, Pittsburgh, 1990, Symp. (Int.) Combust., [Proc.] 23, 131 (1990).

  89. H. F. Calcotte, in Proceedings of the 8th Symposium (International) on Combustion, Pittsburgh, 1962, Symp. (Int.) Combust., [Proc.] 8, 184 (1962).

  90. J. Peeters and C. Vinckier, in Proceedings of the 15th Symposium (International) on Combustion, Pittsburgh, 1974, Symp. (Int.) Combust., [Proc.] 15, 969 (1974).

  91. B. P. Demidovich, I. A. Maron, and E. Z. Shuvalova, Numerical Analysis Methods (Nauka, Moscow, 1967) [in Russian].

    MATH  Google Scholar 

  92. G. A. Askar’yan, G. M. Batanov, A. E. Barkhudarov, S. I. Gritsinin, E. G. Korchagina, I. A. Kossyi, V. P. Silakov, and N. M. Tarasova, Sov. J. Plasma Phys. 18, 625 (1992).

    Google Scholar 

  93. G. M. Batanov, I. A. Kossyi, and V. P. Silakov, Plasma Phys. Rep. 28, 204 (2002).

    Article  ADS  Google Scholar 

  94. G. A. Askaryan, G. M. Batanov, I. A. Kossyi, and A. Yu. Kostinskii, in High Power Microwave Generation and Applications (Proceedings of the 10th International School of Plasma Physics “Piero Caldirola,” Varenna, 1991), Ed. by D. K. Akulina, C. B. Wharton, and E. Sindoni (Editrice Compositori, Bologna, 1992), p. 207.

  95. G. A. Askaryan, G. M. Batanov, D. F. Bykov, S. I. Gritsinin, I. A. Kossyi, A. Yu. Kostinskii, A. A. Matveyev, and V. P. Silakov, in Controlled Active Global Experiments (Proceedings of the 7th International School of Plasma Physics “Piero Caldirola,” Varenna, 1990), Ed. by E. Sindoni and A. Y. Wong (Editrice Compositori, Bologna, 1991), p. 239.

  96. V. Shui, J. Chem. Phys. 53, 2547 (1970).

    Article  ADS  Google Scholar 

  97. S. W. Benson and T. Fueno, J. Chem. Phys. 36, 1597 (1962).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 17-12-01352.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shakhatov.

APPENDIX

APPENDIX

Tables 1–10 show the rate constants and reaction equations used in the model.

Reactions of dissociation and recombination occur with the participation of a third particle (M or Mc). The type of particle M is determined by the chemical compounds listed in Section 2 of this article. The type of particle MC is given in Tables 1–3.

According to literature, the recommended values of reaction rate constants are given taking into account the temperature range T (in K) in the second column of the table. If the temperature range is not given by the authors or is narrower than the temperature range under study (from 300 to 5000 K), then in the model, the rate constants are extrapolated over the temperature range under study.

For most reactions given in the tables, the dependences on temperature of rate constants \({{k}_{{f,r}}}\) of the forward ( f ) and reverse (r) chemical reactions are approximated using the modified Arrhenius equation [28, 32, 33, 35]

$${{k}_{{f,r}}} = A \times {{T}^{n}} \times {\text{exp}}\left( { - {{E}_{a}}{\text{/}}T} \right).$$

Here, the rate constants are expressed in units of mole1 ‒ s cm3(s – 1) s–1. The value s determines the order of the reaction. The parameters A, n, and Ea are the constant preexponential factor, the index of power in the temperature factor of the preexponential factor, and the energy threshold of the reaction, respectively [26, 33].

The rate constants for a number of reactions have a more complicated dependence on the translational temperature than the predictions of the modified Arrhenius formula. Their value can be determined not only by the translational temperature, but also by the concentrations of their interaction partners. These rate macroconstants of complicated reactions are given in tables using the approximate expressions from work [32] obtained by the methods of single-quantum step-wise excitation and transitional state [46], the Troe model, the modified Keck’s variational theory [96], and by the scheme of single-step dissociation [97]. Expressions for such constants of forward and reverse reactions contain correction factors dif and dir, respectively. The lower index i stands for the number of the reaction for which the correction factor is in-troduced. For example, for the forward reaction no. 3.15.7, index i is 3157f.

The correction coefficient \({{d}_{{101f}}}\) for reactions 1.0.1–1.0.5 (Table 1) is calculated by the formula

$${{d}_{{101f}}} = 1 - {\text{exp}}\left( { - 3354{\text{/}}T} \right).$$

The coefficients d101r and d102r are determined as the product of the correction coefficient \({{d}_{{{\text{101}}f}}}\) and the equilibrium constant Keq of reactions 1.0.1–1.0.5 (Table 1), respectively.

For reaction 2.0.3 (Table 2), the coefficient d203f changes is the range from 0.3 to 1.5. Coefficients d204 f,r and \({{d}_{{{\text{221}}f}}}\) for reactions 2.0.4 and 2.2.1–2.2.5, 2.3 (Table 2), respectively, are determined by expressions

$$\begin{gathered} {{d}_{{{\text{204}}f}}} = {\text{exp}}\left( {{{{\text{170}}} \mathord{\left/ {\vphantom {{{\text{170}}} T}} \right. \kern-0em} T}} \right),\quad {{d}_{{{\text{204}}r}}} = {\text{exp}}\left( {{{{\text{1060}}} \mathord{\left/ {\vphantom {{{\text{1060}}} T}} \right. \kern-0em} T}} \right), \\ {{d}_{{{\text{221}}f}}} = {\text{1}} - {\text{exp}}\left( { - 2240{\text{/}}T} \right). \\ \end{gathered} $$

To determine the values of the correction coefficient \({{d}_{{{\text{301}}f}}}\) (for reactions 3.0.1 and 3.0.2, Table 3) the following relation is used

$${{d}_{{{\text{301}}f}}} = {\text{1}} - {\text{exp}}\left( { - 2700{\text{/}}T} \right).$$

Coefficients \({{d}_{{{\text{331}}f,r}}}\) for reactions of dissociation and recombination (3.3.1–3.3.5, Table 3) are calculated as

$${{d}_{{{\text{331}}f}}} = {{\left[ {1 + 706 \times \exp \left\{ { - \frac{{{\text{2164}}}}{T}} \right\} \times \frac{{{{X}_{{{\text{N}}{{{\text{O}}}_{{\text{2}}}}}}}}}{{\sum\limits_m {{{X}_{m}} \times {{R}_{m}}} }}} \right]}^{{ - 1}}},$$
$${{d}_{{{\text{331}}r}}} = {{\left[ {\frac{{{{K}_{\infty }}}}{{K_{{{\text{Ar}}}}^{{\text{0}}}{{ \times }}\left( {{{N}_{{{\text{(}}{{{\text{N}}}_{{\text{2}}}}{\text{,}}{{{\text{O}}}_{{\text{2}}}}{\text{,NO,N}}{{{\text{O}}}_{{\text{2}}}}{\text{,}}{{{\text{N}}}_{{\text{2}}}}{\text{O)}}}}}{\text{/}}N_{{\text{A}}}^{{}}} \right) \times \sum\limits_m {{{X}_{m}} \times {{R}_{m}}} }}} \right]}^{{ - 1}}}{{ \times }}{{F}^{Y}},$$
$$Y = {{\left\{ {1 + {{{\log }}^{{\text{2}}}}\left[ {\frac{{K_{{{\text{Ar}}}}^{{\text{0}}} \times \left( {{{N}_{{{\text{(}}{{{\text{N}}}_{{\text{2}}}}{\text{,}}{{{\text{O}}}_{{\text{2}}}}{\text{,NO,N}}{{{\text{O}}}_{{\text{2}}}}{\text{,}}{{{\text{N}}}_{{\text{2}}}}{\text{O)}}}}}{\text{/}}N_{{\text{A}}}^{{}}} \right) \times \sum\limits_m {{{R}_{m}} \times {{X}_{m}}} }}{{{{K}_{\infty }}}}} \right]} \right\}}^{{ - 1}}},$$
$$K_{{{\text{Ar}}}}^{{\text{0}}} = 2.3 \times {{10}^{{ - 16}}} \times {{\left( {\frac{T}{{300}}} \right)}^{{ - 1.8}}},\quad {{K}_{\infty }} = 1.8 \times {{10}^{{13}}} \times {{\left( {\frac{T}{{300}}} \right)}^{{0.3}}}.$$

Here, \(K_{{{\text{Ar}}}}^{{\text{0}}}\) is the recombination rate constant (on argon atoms) in the low-pressure region (it is measured in cm6 s–1 mol–2), \({{K}_{\infty }}\) is the recombination rate constant in the high-pressure range (it is measured in cm3 s–1 mol–1), \({{X}_{m}}\) are the molar fractions of the chemical compounds of the mixture (m = \({{{\text{N}}}_{{\text{2}}}}{\text{,}}\;{{{\text{O}}}_{{\text{2}}}}{\text{,}}\;{\text{NO,}}\;{{{\text{N}}}_{{\text{2}}}}{\text{O,}}\;{\text{N}}{{{\text{O}}}_{{\text{2}}}}\)), NA is the number of particles in a single mole of the substance, and \({{R}_{m}}\) is the relative efficiency of component m relative to component m = \({{{\text{N}}}_{{\text{2}}}}\):

$$\begin{gathered} {{R}_{{{{{\text{N}}}_{{\text{2}}}}}}} = 1.6;\quad {{R}_{{{{{\text{O}}}_{{\text{2}}}}}}} = 1.3;\quad {{R}_{{{\text{NO}}}}} = 2.8; \\ {{R}_{{{{{\text{N}}}_{{\text{2}}}}{\text{O}}}}} = 7;\quad {{R}_{{{\text{N}}{{{\text{O}}}_{{\text{2}}}}}}} = 10. \\ \end{gathered} $$

The values of coefficients \({{d}_{{{\text{371}}f,r}}}\) (for reactions 3.7.1, Table 3) and \({{d}_{{{\text{311}}f}}}\) (for reaction 3.11, Table 3) are calculated by the formulas

$$\begin{gathered} {{d}_{{{\text{371}}f}}} = {{d}_{{{\text{371}}r}}} = \left( {\sum\limits_m {{{R}_{m}} \times {{X}_{m}}} } \right) \\ \, \times {{\left[ {\left( {1 + 78.3 \times \exp \left( { - 2315{\text{/}}T} \right)} \right) \times {{X}_{{{\text{NO}}}}}{\text{/}}\sum\limits_m {{{R}_{m}} \times {{X}_{m}}} } \right]}^{{ - 1}}}, \\ \end{gathered} $$
$$\begin{gathered} {{d}_{{{\text{311}}f}}} = {{\left[ {{\text{1 + 78}}{\text{.3}} \times \exp \left( { - 2300{\text{/}}T} \right) \times \frac{{{{X}_{{{\text{NO}}}}}}}{{\sum\limits_m {{{R}_{m}} \times {{X}_{m}}} }}} \right]}^{{ - 1}}} \\ (m = {{{\text{N}}}_{{\text{2}}}}{\text{,}}{{{\text{N}}}_{{\text{2}}}}{\text{O,}}{{{\text{O}}}_{{\text{2}}}}{\text{,NO}}), \\ \end{gathered} $$
$$\begin{gathered} {{R}_{{{{{\text{N}}}_{{\text{2}}}}}}} = 1.74;\quad {{R}_{{{{{\text{N}}}_{{\text{2}}}}{\text{O}}}}} = 6.9,\quad {{R}_{{{{{\text{O}}}_{{\text{2}}}}}}} = 1.3, \\ {{R}_{{{\text{NO}}}}} = 3,\quad {{R}_{{{\text{C}}{{{\text{O}}}_{{\text{2}}}}}}} = 4. \\ \end{gathered} $$

For reaction 3.11, index m, besides the listed components for the mixture for reactions 3.7.1., additionally includes the denomination for the CO2 component (\(m = {\text{C}}{{{\text{O}}}_{{\text{2}}}}\)).

The coefficients \({{d}_{{{\text{3151}}f,r}}}\) and \({{d}_{{{\text{3154}}f,r}}}\) for reactions of dissociation and recombination (3.15.1 and 3.15.4, Table 3) are determined by the expressions

$${{d}_{{{\text{315(1,4)}}f,r}}} = {{\left[ {{\text{1}} + \frac{{{{K}_{{\infty {\text{,}}f,r}}}}}{{K_{{{{{\text{N}}}_{{\text{2}}}}{\text{,}}f,r}}^{{\text{0}}} \times \left( {{{N}_{{{\text{(}}{{{\text{N}}}_{{\text{2}}}}{\text{,}}{{{\text{O}}}_{{\text{2}}}}{\text{,CO,C}}{{{\text{O}}}_{{\text{2}}}}{\text{)}}}}}{\text{/}}N_{{\text{A}}}^{{}}} \right) \times \sum\limits_m {{{R}_{m}} \times {{X}_{m}}} }}} \right]}^{{ - 1}}}{{ \times }}{{F}^{{Y_{{f,r}}^{{(1,4)}}}}},$$
$$F\left( T \right) = \exp \left( { - \frac{T}{{1300}}} \right) + \exp \left( { - \frac{{5200}}{T}} \right),$$
$$\begin{gathered} Y_{{f,r}}^{{{\text{(1,4)}}}} = {{\left\{ {{\text{1}} + {{{\log }}^{{\text{2}}}}\left[ {\frac{{K_{{{{{\text{N}}}_{{\text{2}}}}{\text{,}}f,r}}^{{\text{0}}} \times \left( {{{N}_{{{\text{(}}{{{\text{N}}}_{{\text{2}}}}{\text{,}}{{{\text{O}}}_{{\text{2}}}}{\text{,CO,C}}{{{\text{O}}}_{{\text{2}}}}{\text{)}}}}}{\text{/}}N_{{\text{A}}}^{{}}} \right) \times \sum\limits_m {{{R}_{m}} \times {{X}_{m}}} }}{{{{K}_{{\infty {\text{,}}f{\text{,}}r}}}}}} \right]} \right\}}^{{ - 1}}} \\ (m = {{{\text{N}}}_{2}},{{{\text{O}}}_{2}},{\text{CO}},{\text{C}}{{{\text{O}}}_{2}}), \\ \end{gathered} $$
$${{R}_{{{{{\text{N}}}_{{\text{2}}}}}}} = 1,\quad {{R}_{{{{{\text{O}}}_{{\text{2}}}}}}} = 1,\quad {{R}_{{{\text{CO}}}}} = 2,\quad {{R}_{{{\text{C}}{{{\text{O}}}_{{\text{2}}}}}}} = 2.9,$$
$$K_{{{{{\text{N}}}_{2}},f}}^{0} = 4.45 \times {{10}^{{16}}} \times {{\left( {\frac{T}{{1000}}} \right)}^{{ - 2}}} \times \exp \left( { - \frac{{23{\kern 1pt} 234}}{T}} \right),$$
$$K_{{\infty ,f}}^{{}} = 2 \times {{10}^{{14}}} \times \exp \left( { - \frac{{23{\kern 1pt} 234}}{T}} \right),$$
$$\begin{gathered} K_{{{{{\text{N}}}_{{\text{2}}}},r}}^{{\text{0}}} = 2.93 \times {{10}^{{15}}} \times {{\left( {\frac{T}{{{\text{1000}}}}} \right)}^{{ - 2}}}, \\ K_{{\infty ,r}}^{{}} = 1.32 \times {{10}^{{13}}}. \\ \end{gathered} $$

Here, \(K_{{{{{\text{N}}}_{{\text{2}}}},f}}^{{\text{0}}}\) and \(K_{{{{{\text{N}}}_{{\text{2}}}},r}}^{{\text{0}}}\) are the rate constants for the reactions of dissociation and recombination in the low-pressure range (their units of measurement are cm3 s–1 mol–1 and cm6 s–1 mol–2, respectively). \(K_{{\infty ,f}}^{{}}\) and \(K_{{\infty ,r}}^{{}}\) are the rate constants in the high-pressure region (units of measurement s–1 and cm3 s–1 mol–1, respectively). The indices 1 and 4 correspond to molecular components \({{{\text{N}}}_{{\text{2}}}}{\text{,}}{{{\text{O}}}_{{\text{2}}}}\) and \({\text{CO,C}}{{{\text{O}}}_{{\text{2}}}}\).

The coefficients \({{d}_{{{\text{3161}}f,r}}}\) and \({{d}_{{{\text{3162}}f,r}}}\) for reactions of dissociation and recombination (3.16.1 and 3.16.2, Table 3) are found by the expressions

$${{d}_{{{\text{316(1,2)}}f,r}}}{\text{ = }}{{\left[ {{\text{1}} + \frac{{{{K}_{{\infty ,f,r}}}}}{{K_{{{{{\text{N}}}_{{\text{2}}}}{\text{,}}f,r}}^{{\text{0}}} \times \left( {{{N}_{{{\text{(}}{{{\text{N}}}_{{\text{2}}}}{\text{,}}{{{\text{O}}}_{{\text{2}}}}{\text{,CO,C}}{{{\text{O}}}_{{\text{2}}}}{\text{)}}}}}{\text{/}}N_{{\text{A}}}^{{}}} \right) \times \sum\limits_m {{{R}_{m}} \times {{X}_{m}}} }}} \right]}^{{{\text{ - 1}}}}} \times {{F}^{{Y_{{f,r}}^{{{\text{(1,2)}}}}}}},$$
$$F\left( T \right) = \exp \left( { - \frac{T}{{1300}}} \right) + \exp \left( { - \frac{{5200}}{T}} \right),$$
$$Y_{{f,r}}^{{{\text{(1,2)}}}} = {{\left\{ {{\text{1}} + {{{\log }}^{{\text{2}}}}\left[ {\frac{{K_{{{{{\text{N}}}_{{\text{2}}}}{\text{,}}f,r}}^{{\text{0}}} \times \left( {{{N}_{{{\text{(}}{{{\text{N}}}_{{\text{2}}}}{\text{,}}{{{\text{O}}}_{{\text{2}}}}{\text{,CO,C}}{{{\text{O}}}_{{\text{2}}}}{\text{)}}}}}{\text{/}}N_{{\text{A}}}^{{}}} \right) \times \sum\limits_m {{{R}_{m}} \times {{X}_{m}}} }}{{{{K}_{{\infty ,f,r}}}}}} \right]} \right\}}^{{ - 1}}}$$
$$(m = {{{\text{N}}}_{{\text{2}}}}{\text{,}}{{{\text{O}}}_{{\text{2}}}}{\text{,CO,C}}{{{\text{O}}}_{{\text{2}}}}),\quad {{R}_{{{{{\text{N}}}_{{\text{2}}}}}}} = 1;\quad {{R}_{{{{{\text{O}}}_{{\text{2}}}}}}} = 1;\quad {{R}_{{{\text{CO}}}}} = 2;\quad {{R}_{{{\text{C}}{{{\text{O}}}_{{\text{2}}}}}}} = 2.9,$$
$$K_{{{{{\text{N}}}_{{\text{2}}}},f}}^{{\text{0}}} = 9. \times {{10}^{6}} \times {{\left( {\frac{T}{{{\text{1000}}}}} \right)}^{{ - {\text{2}}}}} \times {\text{exp}}\left( { - \frac{{{\text{23}}{\kern 1pt} {\text{234}}}}{T}} \right),$$
$$K_{{\infty ,f}}^{{}} = 4 \times {{10}^{{14}}} \times \exp \left( { - \frac{{{\text{23}}{\kern 1pt} {\text{234}}}}{T}} \right),$$
$$K_{{{{{\text{N}}}_{{\text{2}}}},r}}^{{\text{0}}} = 5.13 \times {{10}^{{15}}} \times {{\left( {\frac{T}{{{\text{1000}}}}} \right)}^{{ - {\text{2}}}}} \times \exp \left\{ { - \frac{{{\text{23}}{\kern 1pt} {\text{050}}}}{T}} \right\},$$
$$K_{{\infty ,r}}^{{}} = 2.3 \times {{10}^{{13}}} \times \exp \left\{ { - \frac{{{\text{23}}{\kern 1pt} {\text{050}}}}{T}} \right\}.$$

Here, indices 1 and 2 correspond to the \({{{\text{N}}}_{{\text{2}}}}\), O2 and \({\text{CO,}}\;{\text{C}}{{{\text{O}}}_{{\text{2}}}}\) components of the gas medium.

The coefficients \({{d}_{{{\text{3171}}f,r}}}\) of dissociation and recombination reactions (3.17.1, Table 3) are calculated by the formulas

$${{d}_{{{\text{3171}}f,r}}} = {{\left[ {{\text{1}} + \frac{{{{K}_{{\infty ,f,r}}}}}{{K_{{{{{\text{N}}}_{{\text{2}}}}{\text{,}}f,r}}^{{\text{0}}} \times \left( {{{N}_{{{\text{(}}{{{\text{N}}}_{{\text{2}}}}{\text{,}}{{{\text{O}}}_{{\text{2}}}}{\text{,}}{{{\text{N}}}_{{\text{2}}}}{{{\text{O}}}_{{\text{5}}}}{\text{,NO,C}}{{{\text{O}}}_{{\text{2}}}}{\text{)}}}}}{\text{/}}N_{{\text{A}}}^{{}}} \right) \times \sum\limits_m {{{R}_{m}} \times {{X}_{m}}} }}} \right]}^{{ - 1}}}{{ \times }}{{F}^{{Y_{{f,r}}^{{}}}}},$$
$$F\left( T \right) = {\text{exp}}\left( { - \frac{T}{{{\text{250}}}}} \right) + {\text{exp}}\left( { - \frac{{{\text{1050}}}}{T}} \right),$$
$$Y_{{f,r}}^{{}} = {{\left\{ {{\text{1}} + {{{\log }}^{{\text{2}}}}\left[ {\frac{{K_{{{{{\text{N}}}_{{\text{2}}}}{\text{,}}f,r}}^{{\text{0}}} \times \left( {{{N}_{{{\text{(}}{{{\text{N}}}_{{\text{2}}}}{\text{,}}{{{\text{O}}}_{{\text{2}}}}{\text{,}}{{{\text{N}}}_{{\text{2}}}}{{{\text{O}}}_{{\text{5}}}}{\text{,NO,C}}{{{\text{O}}}_{{\text{2}}}}{\text{)}}}}}{\text{/}}N_{{\text{A}}}^{{}}} \right) \times \sum\limits_m {{{R}_{m}} \times {{X}_{m}}} }}{{{{K}_{{\infty ,f,r}}}}}} \right]{\text{/}}{{{\left( {0.75 - \log F{\text{(}}T{\text{)}}} \right)}}^{2}}} \right\}}^{{ - 1}}}$$
$$\begin{gathered} (m = {{{\text{N}}}_{{\text{2}}}}{\text{,}}{{{\text{O}}}_{{\text{2}}}}{\text{,}}{{{\text{N}}}_{{\text{2}}}}{{{\text{O}}}_{{\text{5}}}}{\text{,NO,C}}{{{\text{O}}}_{{\text{2}}}}),\quad \\ {{R}_{{{{{\text{N}}}_{{\text{2}}}}}}} = 1,\quad {{R}_{{{{{\text{O}}}_{{\text{2}}}}}}} = 1,\quad {{R}_{{{{{\text{N}}}_{{\text{2}}}}{{{\text{O}}}_{{\text{5}}}}}}} = 4.4,\quad {{R}_{{{\text{NO}}}}} = 1.3,\quad {{R}_{{{\text{C}}{{{\text{O}}}_{{\text{2}}}}}}} = 1.7, \\ \end{gathered} $$
$$K_{{{{{\text{N}}}_{{\text{2}}}},f}}^{{\text{0}}} = 1.32 \times {{10}^{{21}}} \times {{\left( {\frac{T}{{{\text{300}}}}} \right)}^{{ - {\text{6}}{\text{.1}}}}} \times {\text{exp}}\left( { - \frac{{{\text{11}}{\kern 1pt} {\text{080}}}}{T}} \right),$$
$$K_{{\infty ,f}}^{{}} = 9.7 \times {{10}^{{14}}} \times {{\left( {\frac{T}{{300}}} \right)}^{{ - 0.9}}} \times {\text{exp}}\left( { - \frac{{{\text{11}}{\kern 1pt} {\text{080}}}}{T}} \right),$$
$$K_{{{{{\text{N}}}_{{\text{2}}}},r}}^{{\text{0}}} = 1.34 \times {{10}^{{18}}} \times {{\left( {\frac{T}{{{\text{300}}}}} \right)}^{{ - 5}}},$$
$$K_{{\infty ,r}}^{{}} = 9.6 \times {{10}^{{11}}} \times {{\left( {\frac{T}{{{\text{300}}}}} \right)}^{{0.2}}}.$$

The coefficient d323f for reaction 3.23 (Table 3) is the same as coefficient d331f (dissociation reaction 3.3.1–3.3.5, Table 3). For this reaction, \({{X}_{m}}\) are mole fractions of the mixture components m = \({\text{N}}{{{\text{O}}}_{{\text{2}}}}{\text{,}}{{{\text{N}}}_{{\text{2}}}}{\text{,}}{{{\text{O}}}_{{\text{2}}}}{\text{,C}}{{{\text{O}}}_{{\text{2}}}}\) and Rm is the relative efficiency of component m relative to the component m = \({\text{N}}{{{\text{O}}}_{{\text{2}}}}\):

$${{R}_{{{\text{N}}{{{\text{O}}}_{{\text{2}}}}}}} = 10;\quad {{R}_{{{{{\text{N}}}_{{\text{2}}}}}}} = 1.6;\quad {{R}_{{{{{\text{O}}}_{{\text{2}}}}}}} = 1.3;\quad {{R}_{{{\text{C}}{{{\text{O}}}_{{\text{2}}}}}}} = 4.3.$$

The values of coefficients \({{d}_{{{\text{3271}}f,r}}}\) for dissociation and recombination reactions (3.27.1, Table 3) are determined by the expressions

$${{d}_{{{\text{3271}}f,r}}} = {{\left[ {{\text{1}} + \frac{{{{K}_{{\infty ,f,r}}}}}{{K_{{{{{\text{N}}}_{{\text{2}}}}{\text{,}}f,r}}^{{\text{0}}} \times \left( {{{N}_{{{\text{(}}{{{\text{N}}}_{{\text{2}}}}{\text{,}}{{{\text{O}}}_{{\text{2}}}}{\text{,N}}{{{\text{O}}}_{{\text{2}}}}{\text{,C}}{{{\text{O}}}_{{\text{2}}}}{\text{)}}}}}{\text{/}}N_{{\text{A}}}^{{}}} \right) \times \sum\limits_m {{{R}_{m}} \times {{X}_{m}}} }}} \right]}^{{ - {\text{1}}}}} \times {{F}^{{Y_{{f,r}}^{{}}}}},$$
$$F\left( T \right) = {\text{exp}}\left( { - \frac{T}{{250}}} \right) + \exp \left( { - \frac{{1050}}{T}} \right),$$
$$Y_{{f,r}}^{{}} = {{\left\{ {{\text{1}} + {{{\log }}^{{\text{2}}}}\left[ {\frac{{K_{{{{{\text{N}}}_{{\text{2}}}}{\text{,}}f,r}}^{{\text{0}}} \times \left( {{{N}_{{{\text{(}}{{{\text{N}}}_{{\text{2}}}}{\text{,}}{{{\text{O}}}_{{\text{2}}}}{\text{,N}}{{{\text{O}}}_{{\text{2}}}}{\text{,C}}{{{\text{O}}}_{{\text{2}}}}{\text{)}}}}}{\text{/}}N_{{\text{A}}}^{{}}} \right) \times \sum\limits_m {{{R}_{m}} \times {{X}_{m}}} }}{{{{K}_{{\infty ,f,r}}}}}} \right]{\text{/}}{{{\left( {0.75 - \log F{\text{(}}T{\text{)}}} \right)}}^{2}}} \right\}}^{{ - 1}}}$$
$$\begin{gathered} {\text{(}}m = {{{\text{N}}}_{{\text{2}}}}{\text{,}}{{{\text{O}}}_{{\text{2}}}}{\text{,N}}{{{\text{O}}}_{{\text{2}}}}{\text{,C}}{{{\text{O}}}_{{\text{2}}}}),\quad \\ {{R}_{{{{{\text{N}}}_{{\text{2}}}}}}} = 1,\quad {{R}_{{{{{\text{O}}}_{{\text{2}}}}}}} = 1,\quad {{R}_{{{{{\text{N}}}_{{\text{2}}}}{{{\text{O}}}_{{\text{4}}}}}}} = 2,\quad {{R}_{{{\text{N}}{{{\text{O}}}_{{\text{2}}}}}}} = 2,\quad {{R}_{{{\text{C}}{{{\text{O}}}_{{\text{2}}}}}}} = 2. \\ \end{gathered} $$
$$K_{{{{{\text{N}}}_{2}},f}}^{0} = 1.44 \times {{10}^{{18}}} \times {{\left( {\frac{T}{{300}}} \right)}^{{ - 5}}} \times \exp \left( { - \frac{{6392}}{T}} \right),$$
$$K_{{\infty ,f}}^{{}} = 3 \times {{10}^{{15}}} \times {{\left( {\frac{T}{{300}}} \right)}^{{ - 0.8}}} \times \exp \left( { - \frac{{6392}}{T}} \right).$$

To determine the rate constants for reactions 1.0.1–1.0.5 (Table 1), 2.2.1–2.2.5 (Table 2), and 3.22 (Table 3), the detailed equilibrium principle is applied. They are calculated taking into account the equilibrium constant Keq. The tabulated data for the equilibrium constants are taken from reference book [19]. The dependence of the equilibrium constant on temperature is interpolated by the method of cubic splines.

For the comparative analysis of the rate constants of reactions reverse to dissociation (recombination reactions from Tables 1–3), they were also determined by the model of triple collisions [33]. The collision cross sections of the particles are calculated by the models of elastic collisions: hard spheres, hard spheres with variable diameter; with Lennard-Jones interaction potential; with Born–Mayer repulsion potential.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakhatov, V.A., Gritsinin, S.I. & Borzosekov, V.D. Simulations of the Formation of Nitrogen Oxides at the Cooling Stage of a Subthreshold Microwave Discharge in Air with Admixtures of Methane. Plasma Phys. Rep. 47, 465–497 (2021). https://doi.org/10.1134/S1063780X21050081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21050081

Keywords:

Navigation