Skip to main content
Log in

Three-Dimensional Isothermal Ion Acoustic Shock Waves in Ultra-Relativistic Degenerate Electron–Positron–Ion Magnetoplasmas

  • OSCILLATIONS AND WAVES IN PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The modifications, which arise from ultra-relativistic and degenerate effects of electrons and positrons as well as the chemical potentials in the basic features of three-dimensional isothermal ion acoustic shock waves (IIASWs) propagating in magnetized electron–positron–ion (e–p–i) plasmas are studied. The cold ions are considered to be magnetized and inertial, while the small particles (i.e., electrons and positrons) are taken to obey the Fermi–Dirac statistics. The well-known reductive perturbation analysis is applied to obtain the nonlinear Zakharov–Kuznetsov–Burgers equation (NZKBE). The analytical shock wave solution is obtained by employing the tanh technique. Furthermore, the asymptotic behavior and the stability of the shock structures are discussed. In the current model, the disturbances of nonlinear isothermal ion acoustic waves are found to exhibit only monotonic IIASWs. The consequences of the chemical potential, the presence of ultra-relativistic degenerate electrons and positrons, and magnetic field on the essential properties of three-dimensional IIASWs are numerically examined. The numerical investigations give rise to significant high lights on the propagation and the dynamic behavior of IIASWs. It is found that the amplitudes of the monotonic IIASWs decrease with chemical potentials of ultra-relativistic degenerate electrons and positrons increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. P. A. Markowich, C. A. Ringhofer, and C. Schmeiser, Semiconductor Equations (Springer-Verlag, New York, 1990).

    Book  Google Scholar 

  2. L. K. Ang, T. J. T. Kwan, and Y. Y. Lau, Phys. Rev. Lett. 91, 208303 (2003).

  3. T. C. Killian, Nature (London) 441, 298 (2006).

    Article  ADS  Google Scholar 

  4. S. H. Glenzer, O. L. Landen, and P. Neumayer, Phys. Rev. Lett. 98, 065002 (2007).

  5. F. C. Michel, Theory of Neutron Star Magnetosphere (Chicago University Press, Chicago, 1991).

    Google Scholar 

  6. A. Rahman, S. Ali, A. M. Mirza, and A. Qamar, Phys. Plasmas 20, 042305 (2013).

  7. E. F. El-Shamy, Phys. Rev. E 91, 033105 (2015).

  8. E. F. El-Shamy, R. C. Al-Chouikh, A. El-Depsy, and N. S. Al-Wadie, Phys. Plasmas 23, 122122 (2016).

  9. S. Chandrasekhar, Astrophys. J. 74, 81 (1931).

    Article  ADS  Google Scholar 

  10. S. Chandrasekhar, Philos. Mag. 11, 592 (1931).

    Article  Google Scholar 

  11. S. Chandrasekhar, Mon. Not. R. Astron. Soc. 170, 405 (1935).

    Google Scholar 

  12. F. Haas, L. G. Garcia, J. Goedert, and G. Manfredi, Phys. Plasmas 10, 3858 (2003).

    Article  ADS  Google Scholar 

  13. S. A. Khanand and W. Masood, Phys. Plasmas 15, 062301 (2008).

  14. S. Mahmood and A. Mushtaq, Phys. Lett. A 372, 3467 (2008).

    Article  ADS  Google Scholar 

  15. E. F. El-Shamy, W. M. Moslem, and P. K. Shukla, Phys. Lett. A 374, 290 (2009).

    Article  ADS  Google Scholar 

  16. W. Masood, A. M. Mirza, Sh. Nargis, and M. Ayub, Phys. Plasmas 16, 042308 (2009).

  17. S. K. El-Labany, E. F. El-Shamy, W. F. El-Taibany, and P. K. Shukla, Phys. Lett. A 374, 960 (2010).

    Article  ADS  Google Scholar 

  18. F. Haas, J. Plasma Phys. 82, 705820602 (2016).

  19. S. Islam, S. Sultana, and A. A. Mamun, Phys. Plasmas 24, 092115 (2017).

  20. A. E. Dubinov, Plasma Phys. Rep. 33, 210 (2007).

    Article  ADS  Google Scholar 

  21. A. E. Dubinov and A. A. Dubinova, Plasma Phys. Rep. 34, 403 (2008).

    Article  ADS  Google Scholar 

  22. A. E. Dubinov and M. A. Sazonkin, Plasma Phys. Rep. 35, 14 (2009).

    Article  ADS  Google Scholar 

  23. A. E. Dubinov, A. A. Dubinova, and M. A. Sazonkin, J. Commun. Technol. Electron. 55, 907 (2010).

    Article  Google Scholar 

  24. A. E. Dubinov and M. A. Sazonkin, JETP 111, 865 (2010).

    Article  ADS  Google Scholar 

  25. A. E. Dubinov and I. N. Kitaev, Phys. Plasmas 21, 102105 (2014).

  26. B. M. Mladek, G. Kahl, and M. J. Neumann, Chem. Phys. 124, 064503 (2006).

  27. A. El-Depsy and M. M. Selim, IEEE Trans. Plasma Sci. 44, 2901 (2016).

    Article  ADS  Google Scholar 

  28. F. Haas and S. Mahmood, Phys. Rev. E 97, 063206 (2018).

  29. M. M. Rahman, M. S. Alam, and A. A. Mamun, J. Korean Phys. Soc. 64, 1828 (2014).

    Article  ADS  Google Scholar 

  30. B. Sahu and R. Roychoudhury, Phys. Plasmas 14, 072310 (2007).

  31. S. Hussain and N. Akhtar, Phys. Plasmas 20, 012305 (2013).

  32. E. F. El-Shamy and A. M. Al-Asbali, Phys. Plasmas 21, 093701 (2014).

  33. A. Rahman, W. Masood, B. Eliasson, and A. Qamar, Phys. Plasmas 20, 092305 (2013).

  34. D. Tong, Statistical Physics, University of Cambridge Part II Mathematical Tripos (University of Cambridge, Cambridge, 2012). http:////www.damtp.cam.ac.uk/user/tong/statphys.html.

    Google Scholar 

  35. H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).

    Article  ADS  Google Scholar 

  36. W. Masood, M. Siddiq, S. Nargis, and A. M. Mirza, Phys. Plasmas 16, 013705 (2009).

  37. W. Malfliet, J. Comput. Appl. Math. 164, 529 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  38. S. Sultana, G. Sarri, and I. Kourakis, Phys. Plasmas 19, 012310 (2012).

Download references

ACKNOWLEDGMENTS

The authors thank the editor and his staff for their kind cooperation.

Funding

The authors extend their appreciation to the Deanship of scientific research at King Khalid University for funding this work through research groups pangram under grant number KKU-R.G.P.1/52/39.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Selim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Shamy, E.F., Selim, M.M. & El-Depsy, A. Three-Dimensional Isothermal Ion Acoustic Shock Waves in Ultra-Relativistic Degenerate Electron–Positron–Ion Magnetoplasmas. Plasma Phys. Rep. 46, 435–442 (2020). https://doi.org/10.1134/S1063780X20040030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20040030

Navigation