Skip to main content
Log in

Dynamics of ionization processes in high-pressure nitrogen, air, and SF6 during a subnanosecond breakdown initiated by runaway electrons

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The dynamics of ionization processes in high-pressure nitrogen, air, and SF6 during breakdown of a gap with a nonuniform distribution of the electric field by nanosecond high-voltage pulses was studied experimentally. Measurements of the amplitude and temporal characteristics of a diffuse discharge and its radiation with a subnanosecond time resolution have shown that, at any polarity of the electrode with a small curvature radius, breakdown of the gap occurs via two ionization waves, the first of which is initiated by runaway electrons. For a voltage pulse with an ∼500-ps front, UV radiation from different zones of a diffuse discharge is measured with a subnanosecond time resolution. It is shown that the propagation velocity of the first ionization wave increases after its front has passed one-half of the gap, as well as when the pressure in the discharge chamber is reduced and/or when SF6 is replaced with air or nitrogen. It is found that, at nitrogen pressures of 0.4 and 0.7 MPa and the positive polarity of the high-voltage electrode with a small curvature radius, the ionization wave forms with a larger (∼30 ps) time delay with respect to applying the voltage pulse to the gap than at the negative polarity. The velocity of the second ionization wave propagating from the plane electrode is measured. In a discharge in nitrogen at a pressure of 0.7 MPa, this velocity is found to be ∼10 cm/ns. It is shown that, as the nitrogen pressure increases to 0.7 MPa, the propagation velocity of the front of the first ionization wave at the positive polarity of the electrode with a small curvature radius becomes lower than that at the negative polarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Raether, Electron Avalanches and Breakdown in Gases (Butterworths, London, 1964).

    Google Scholar 

  2. Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Gas Breakdown (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  3. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  4. Encyclopedia of Low-Temperature Plasma, Vol. VIII-1: Chemistry of Low-Temperature Plasma, Ed. by Yu. A. Lebedev, N. A. Plate, and V. E. Fortov (Yanus-K, Moscow, 2005) [in Russian].

  5. Low Temperature Plasma: Fundamentals, Technologies, and Techniques, Ed. by R. Hippler, H. Kersten, M. Schmidt, and K. H. Schoenbach (Wiley-VCH Verlag, Weinheim, 2008).

  6. Low Temperature Plasma Technology, Ed. by P. K. Chu and X. P. Lu (CRC, Boca Raton, 2014).

  7. Runaway Electrons Preionized Diffuse Discharges, Ed. by V. F. Tarasenko (Nova Science, New York, 2014).

  8. C. T. R. Wilson, Proc. Cambridge Philos. Soc. 22, 534 (1924).

    Article  ADS  Google Scholar 

  9. S. Frankel, V. Highland, T. Sloan, O. Van Dyck, and W. Wales, Nucl. Instrum. Methods Phys. Res. 44, 345 (1966).

    Article  ADS  Google Scholar 

  10. R. C. Noggle, E. P. Krider, and J. R. Wayland, J. Appl. Phys. 39, 4746 (1968).

    Article  ADS  Google Scholar 

  11. L. V. Tarasova and L. N. Khudyakova, Sov. Phys. Tech. Phys. 14, 1148 (1969).

    ADS  Google Scholar 

  12. L. V. Tarasova, L. N. Khudyakova, T. V. Loiko, and V. A. Tsukerman, Sov. Phys. Tech. Phys. 19, 351 (1975).

    ADS  Google Scholar 

  13. L. P. Babich, T. V. Loiko, and V. A. Tsukerman, Sov. Phys. Usp. 36, 592 (1990).

    Google Scholar 

  14. V. F. Tarasenko and S. I. Yakovlenko, Phys. Usp. 47, 887 (2004).

    Article  ADS  Google Scholar 

  15. Proceedings of the Prokhorov General Physics Institute, Russian Academy of Sciences, Ed. by S. I. Yakovlenko (Nauka, Moscow, 2007), Vol. 63 [in Russian].

  16. J. E. Chaparro, W. Justis, H. G. Krompholz, L. L. Hatfield, and A. Neuber, IEEE Trans. Plasma Sci. 36, 2505 (2008).

    Article  ADS  Google Scholar 

  17. A. G. Rep’ev and P. B. Repin, Tech. Phys. 53, 73 (2008).

    Article  Google Scholar 

  18. V. I. Karelin and A. A. Tren’kin, Tech. Phys. Lett. 35, 407 (2009).

    Article  Google Scholar 

  19. L. P. Babich and T. V. Loiko, Plasma Phys. Rep. 36, 263 (2010).

    Article  ADS  Google Scholar 

  20. T. Shao, C. Zhang, Z. Niu, P. Yan, V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, and Yu. V. Shut’ko, Appl. Phys. Lett. 98, 021503 (2011).

    Article  ADS  Google Scholar 

  21. V. F. Tarasenko, Plasma Phys. Rep. 37, 409 (2011).

    Article  ADS  Google Scholar 

  22. D. Levko, Ya. E. Krasik, and V. F. Tarasenko, Int. Rev. Phys. 6, 165 (2012).

    Google Scholar 

  23. T. Shao, V. F. Tarasenko, W. Yang, D. V. Beloplotov, Ch. Zhang, M. I. Lomaev, P. Yan, and D. A. Sorokin, Plasma Sources Sci. Technol. 23, 054018 (2014).

    Article  ADS  Google Scholar 

  24. S. Yatom, D. Levko, V. Vekselman, J. Z. Gleizer, V. Vekselman, and Y. E. Krasik, Appl. Phys. Lett. 100, 024101 (2012).

    Article  ADS  Google Scholar 

  25. G. A. Mesyats, M. I. Yalandin, A. G. Reutova, K. A. Sharypov, V. G. Shpak, and S. A. Shunailov, Plasma Phys. Rep. 38, 29 (2012).

    Article  ADS  Google Scholar 

  26. I. D. Kostyrya, D. V. Rybka, and V. F. Tarasenko, Instrum. Exp. Tech. 55, 72 (2012).

    Article  Google Scholar 

  27. F. Ya. Zagulov, A. S. Kotov, V. G. Shpak, Ya. Ya. Yurike, and M. I. Yalandin, Prib. Tekh. Exp., No. 2, 146 (1989).

    Google Scholar 

  28. A. V. Gurevich, Sov. Phys. JETP 12, 904 (1960).

    MATH  Google Scholar 

  29. A. V. Kozyrev, Yu. D. Korolev, G. A. Mesyats, and Yu. N. Novoselov, VI All-Union Conference on Physics of Low-Temperature Plasmas, Leningrad, 1983, Book of Abstracts, p. 228.

    Google Scholar 

  30. A. M. Boichenko, A. G. Burachenko, I. D. Kostyrya, V. F. Tarasenko, and A. N. Tkachev, Tech. Phys. 56, 1202 (2011).

    Article  Google Scholar 

  31. A. V. Kozyrev, V. F. Tarasenko, E. Kh. Baksht, and Yu. V. Shut’ko, Tech. Phys. Lett. 37, 1054 (2011).

    Article  ADS  Google Scholar 

  32. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC, Boca Raton, 1997).

  33. V. O. Ponomarenko and G. N. Tolmachev, Tech. Phys. Lett. 38, 747 (2012).

    Article  ADS  Google Scholar 

  34. S. M. Starikovskaia, N. B. Anikin, S. V. Pancheshnyi, D. V. Zatsepin, and A. Y. Starikovskii, Plasma Sources Sci. Technol. 10, 344 (2001).

    Article  ADS  Google Scholar 

  35. D. Wang, M. Jikuya, S. Yoshida, S. Katsuki, and H. Akiyama, IEEE Trans. Plasma Sci. 35, 1098 (2007).

    Article  ADS  Google Scholar 

  36. L. M. Vasilyak, S. P. Vetchinin, and D. N. Polyakov, Tech. Phys. Lett. 25, 749 (1999).

    Article  ADS  Google Scholar 

  37. D. V. Beloplotov, M. I. Lomaev, D. A. Sorokin, and V. F. Tarasenko, Opt. Atmos. Okeana 27, 316 (2014).

    Google Scholar 

  38. M. I. Lomaev, D. V. Beloplotov, V. F. Tarasenko, and D. A. Sorokin, IEEE Trans. Dielect. Elect. Insul. 22, 1833 (2015).

    Article  Google Scholar 

  39. G. A. Mesyats, V. V. Osipov, and V. F. Tarasenko, Pulsed Gas Lasers (Nauka, Moscow, 1991; SPIE Press, Washington, 1995).

    Google Scholar 

  40. V. F. Tarasenko, V. M. Orlovskii, and S. A. Shunailov, Izv. Vyssh. Uchebn. Zaved., Fizika, No. 3, 94 (2003).

    Google Scholar 

  41. M. I. Lomaev, D. V. Rybka, D. A. Sorokin, V. F. Tarasenko, and K. Yu. Krivonogova, Opt. Spectrosc. 107, 33 (2009).

    Article  ADS  Google Scholar 

  42. J. Makuchowski and L. Pokora, Opt. Appl. 23, 113 (1993).

    Google Scholar 

  43. I. A. Kossyi, A. Yu. Kostinsky, A. A. Matveyev, and V. P. Silakov, Plasma Sources Sci. Technol. 1, 207 (1992).

    Article  ADS  Google Scholar 

  44. I. D. Kostyrya and V. F. Tarasenko, Izv. Vyssh. Uchebn. Zaved., Fizika, No. 12, 85 (2004).

    Google Scholar 

  45. G. A. Mesyats and D. I. Proskurovsky, Pulsed Electrical Discharge in Vacuum (Nauka, Novosibirsk, 1984; Springer-Verlag, Berlin, 1989).

    Google Scholar 

  46. V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, M. I. Lomaev, D. A. Sorokin, and Yu. V. Shut’ko, Tech. Phys. 55, 904 (2010).

    Article  Google Scholar 

  47. Ch. Zhang, V. F. Tarasenko, T. Shao, D. V. Beloplotov, M. I. Lomaev, R. Wang, D. A. Sorokin, and P. Yan, Phys. Plasmas 22, 033511 (2015).

    Article  ADS  Google Scholar 

  48. T. Shao, V. F. Tarasenko, Ch. Zhang, M. I. Lomaev, D. A. Sorokin, P. Yan, A. V. Kozyrev, and E. Kh. Baksht, J. Appl. Phys. 111, 023304 (2012).

    Article  ADS  Google Scholar 

  49. V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, and M. V. Erofeev, High Voltage Eng. 39, 2105 (2013).

    Google Scholar 

  50. T. Shao, Ch. Zhang, Z. Niu, P. Yan, V. F. Tarasenko, E. Kh. Bakst, I. D. Kostyrya, and Yu. V. Shut’ko, J. Appl. Phys. 109, 083306 (2011).

    Article  ADS  Google Scholar 

  51. S. Yatom and Y. E. Krasik, J. Phys. D 47, 215202 (2014).

    Article  ADS  Google Scholar 

  52. D. A. Sorokin, M. I. Lomaev, T. I. Banokina, and V. F. Tarasenko, Tech. Phys. 59, 1119 (2014).

    Article  Google Scholar 

  53. G. N. Fursey, Field Emission in Vacuum Microelectronics (Plenum, New York, 2005).

    Google Scholar 

  54. E. W. Muller, J. A. Panitz, and S. B. McLane, Rev. Sci. Instrum. 39, 83 (1968).

    Article  ADS  Google Scholar 

  55. G. A. Askar’yan, Tr. FIAN 66, 66 (1973).

    Google Scholar 

  56. V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, I. D. Kostyrya, and D. V. Rybka, Plasma Phys. Rep. 39, 592 (2013).

    Article  ADS  Google Scholar 

  57. V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, and D. V. Rybka, Tech. Phys. 55, 210 (2010).

    Article  Google Scholar 

  58. E. Kh. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I.Lomaev, D. V. Rybka, M. A. Shulepov, and V. F. Tarasenko, J. Phys. D 42, 185201 (2009).

    Article  ADS  Google Scholar 

  59. T. Shao, V. F. Tarasenko, Ch. Zhang, D. V. Beloplotov, W. Yang, M. I. Lomaev, Zh. Zhou, D. A. Sorokin, and P. Yan, Phys. Lett. A 378, 1828 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Tarasenko.

Additional information

Original Russian Text © V.F. Tarasenko, D.V. Beloplotov, M.I. Lomaev, 2015, published in Fizika Plazmy, 2015, Vol. 41, No. 10, pp. 902–917.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasenko, V.F., Beloplotov, D.V. & Lomaev, M.I. Dynamics of ionization processes in high-pressure nitrogen, air, and SF6 during a subnanosecond breakdown initiated by runaway electrons. Plasma Phys. Rep. 41, 832–846 (2015). https://doi.org/10.1134/S1063780X15100098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X15100098

Keywords

Navigation