Skip to main content
Log in

Gravitational lensing in plasmic medium

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Walsh, R. F. Carswell, and R. J. Weymann, Nature 279, 381 (1979).

    Article  ADS  Google Scholar 

  2. C. S. Kochanek, E. E. Falco, C. Impey, J. Lehar, B. McLeod, and H.-W. Rix, CASTLES survey, http://www.cfa.harvard.edu/castles/

  3. G. S. Bisnovatyi-Kogan and O. Yu. Tsupko, Gravit. Cosmol. 15, 20 (2009).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. G. S. Bisnovatyi-Kogan and O. Yu. Tsupko, Mon. Not. Roy. Astron. Soc. 404, 1790 (2010).

    ADS  Google Scholar 

  5. O. Yu. Tsupko and G. S. Bisnovatyi-Kogan, Gravit. Cosmol. 18, 117 (2012).

    Article  MATH  ADS  Google Scholar 

  6. O. Yu. Tsupko and G. S. Bisnovatyi-Kogan, Phys. Rev. D 87, 124009 (2013).

    Article  ADS  Google Scholar 

  7. R. Kayser, S. Refsdal, and R. Stabell, Astron. Astrophys. 166, 36 (1986).

    ADS  Google Scholar 

  8. J. Wambsganss and B. Paczyński, Astron. J. 102, 864 (1991).

    Article  ADS  Google Scholar 

  9. D. O. Muhleman, R. D. Ekers, and E. B. Fomalont, Phys. Rev. Lett. 24, 1377 (1970).

    Article  ADS  Google Scholar 

  10. D. O. Muhleman and I. D. Johnston, Phys. Rev. Lett. 17, 455 (1966).

    Article  ADS  Google Scholar 

  11. A. P. Lightman, W. H. Press, R. H. Price, and S. A. Teukolsky, Problem Book in Relativity and Gravitation (Princeton Univ. Press, Princeton, NJ, 1979).

    Google Scholar 

  12. P. V. Bliokh and A. A. Minakov, Gravitational Lenses (Naukova Dumka, Kiev, 1989) [in Russian].

    Google Scholar 

  13. J. L. Synge, Relativity: the General Theory (North-Holland, Amsterdam, 1960).

    MATH  Google Scholar 

  14. J. Bičák and P. Hadrava, Astron. Astrophys. 44, 389 (1975).

    ADS  Google Scholar 

  15. S. Kichenassamy and R. A. Krikorian, Phys. Rev. D 32, 1866 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  16. R. A. Krikorian, Astrophysics 42, 338 (1999).

    Article  ADS  Google Scholar 

  17. V. Perlick, Ray Optics, Fermat’s Principle, and Applications to General Relativity (Springer-Verlag, Berlin, 2000).

    MATH  Google Scholar 

  18. X. Er and S. Mao, Mon. Not. Roy. Astron. Soc. 437, 2180 (2014).

    Article  ADS  Google Scholar 

  19. V. S. Morozova, B. J. Ahmedov, and A. A. Tursunov, Astrophys. Space Sci. 346, 513 (2013).

    Article  ADS  Google Scholar 

  20. K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D 62, 084003 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  21. P. Schneider, J. Ehlers, and E. E. Falco, Gravitational Lenses (Springer-Verlag, Berlin, 1992).

    Google Scholar 

  22. P. Schneider, C. S. Kochanek, and J. Wambsganss, Gravitational Lensing: Strong, Weak, and Micro (Springer-Verlag, Berlin, 2006).

    Google Scholar 

  23. V. Perlick, Living Rev. Relativ. 7, 9 (2004).

    Article  ADS  Google Scholar 

  24. V. Perlick, http://arxiv.org/pdf/1010.3416v1.pdf

  25. M. Bartelmann and P. Schneider, Phys. Rep. 340, 291 (2001).

    Article  ADS  Google Scholar 

  26. M. Bartelmann, Class. Quant. Gravit. 27, 233001 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  27. J. Wambsganss, Living Rev. Relativ. 1, 12 (1998).

    Article  ADS  Google Scholar 

  28. H. Hoekstra and Bh. Jain, Ann. Rev. Nucl. Part. Systems 58, 99 (2008).

    Article  ADS  Google Scholar 

  29. F. W. Dyson, A. S. Eddington, and C. Davidson, Philos. Trans. Roy. Soc. A 220, 291 (1920).

    Article  ADS  Google Scholar 

  30. S. Refsdal, Mon. Not. Roy. Astron. Soc. 128, 307 (1964).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, Astrophys. J. 648, L109 (2006).

    Article  ADS  Google Scholar 

  32. S. Refsdal, Mon. Not. Roy. Astron. Soc. 128, 295 (1964).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. A. V. Byalko, Sov. Astron. 13, 784 (1969).

    ADS  Google Scholar 

  34. S. Mao and B. Paczyński, Astrophys. J. 374, L37 (1991).

    Article  MATH  ADS  Google Scholar 

  35. J.-P. Beaulieu, D. P. Bennett, P. Fouqué, A. Williams, M. Dominik, U. G. Jørgensen, D. Kubas, A. Cassan, C. Coutures, J. Greenhill, K. Hill, J. Menzies, P. D. Sackett, M. Albrow, S. Brillant, et al., Nature 439, 437 (2006).

    Article  ADS  Google Scholar 

  36. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, New York, 1973).

    Google Scholar 

  37. G. S. Bisnovatyi-Kogan and O. Yu. Tsupko, Astrophysics 51, 99 (2008).

    Article  ADS  Google Scholar 

  38. C. Darwin, Proc. Roy. Soc. A 249, 180 (1959).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. C. R. Keeton and A. O. Petters, Phys. Rev. D 72, 104006 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  40. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1973; Pergamon, Oxford, 1993).

    Google Scholar 

  41. V. Bozza, S. Capozziello, G. Iovane, and G. Scarpetta, Gen. Relativ. Gravit. 33, 1535 (2001).

    Article  ADS  Google Scholar 

  42. V. Bozza, Phys. Rev. D 66, 103001 (2002).

    Article  ADS  Google Scholar 

  43. O. Yu. Tsupko, Phys. Rev. D 89, 084075 (2014).

    Article  ADS  Google Scholar 

  44. S. Frittelli, T. P. Kling, and E. T. Newman, Phys. Rev. D 61, 064021 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  45. V. Perlick, Phys. Rev. D 69, 064017 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  46. V. Bozza, Phys. Rev. D 78, 103005 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  47. V. Perlick, in Proceedings of the 11th Marcel Grossmann Meeting on General Relativity, Berlin, 2006, Ed. by H. Kleinert and R. T. Jantzen (World Scientific, Singapore, 2008), p. 680, http://arxiv.org/pdf/0708.0178v1.pdf

  48. W. Hasse and V. Perlick, Gen. Relativ. Gravit. 34, 415 (2002).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. K. S. Virbhadra, Phys. Rev. D 79, 083004 (2009).

    Article  ADS  Google Scholar 

  50. C.-M. Claudel, K. S. Virbhadra, and G. F. R. Ellis, J. Math. Phys. 42, 818 (2001).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  51. K. S. Virbhadra and C. R. Keeton, Phys. Rev. D 77, 124014 (2008).

    Article  ADS  Google Scholar 

  52. V. Bozza, Gen. Relativ. Gravit. 42, 2269 (2010).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  53. E. F. Eiroa, G. E. Romero, and D. F. Torres, Phys. Rev. D 66, 024010 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  54. S. V. Iyer and A. O. Petters, Gen. Relativ. Gravit. 39, 1563 (2007).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  55. E. F. Eiroa and C. M. Sendra, Class. Quant. Gravit. 28, 085008 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  56. N. Mukherjee and A. S. Majumdar, Gravit. Cosmol. 15, 263 (2009).

    Article  MATH  ADS  Google Scholar 

  57. T. Ghosh and S. SenGupta, Phys. Rev. D 81, 044013 (2010).

    Article  ADS  Google Scholar 

  58. S.-W. Wei, Y.-X. Liu, C.-E. Fu, and K. Yang, http://arxiv.org/pdf/1104.0776v4.pdf

  59. R. Kulsrud and A. Loeb, Phys. Rev. D 45, 525 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  60. A. Broderick and R. Blandford, Mon. Not. Roy. Astron. Soc. 342, 1280 (2003).

    Article  ADS  Google Scholar 

  61. A. Broderick and R. Blandford, Astrophys. Space Sci. 288, 161 (2003).

    Article  ADS  Google Scholar 

  62. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972).

    Google Scholar 

  63. Ya. B. Zel’dovich and I. D. Novikov, The Theory of Gravitation and Stellar Evolution (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  64. S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, Oxford, 1983).

    MATH  Google Scholar 

  65. Yu. Hagihara, Jpn. J. Astron. Geophys. 8, 67 (1931).

    MathSciNet  Google Scholar 

  66. A. W. K. Metzner, J. Mat. Phys. 4, 1194 (1963).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  67. B. Mielnik and J. Plebański, Acta Phys. Pol. 21, 239 (1962).

    MATH  Google Scholar 

  68. C. Darwin, Proc. Roy. Soc. A 263, 39 (1961).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  69. A. F. Bogorodsky, Einstein’s Field Equations and Their Application to Astronomy (Kiev Univ., Kiev, 1962) [in Russian].

    Google Scholar 

  70. C. Rodríguez, Nuovo Cim. B 98, 87, (1987).

    Article  ADS  Google Scholar 

  71. C. Rodríguez, Nuovo Cim. B 100, 801 (1987).

    ADS  Google Scholar 

  72. I. M. Bronstein and K. A. Semendyaev, Handbook of Mathematics (GITTL, Moscow, 1956; Van Nostrand, NewYork, 1985).

    Google Scholar 

  73. L. D. Landau and E. M. Lifshitz, Mechanics (Nauka, Moscow, 1973; Pergamon, Oxford, 1976).

    Google Scholar 

  74. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961).

    Google Scholar 

  75. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Nauka, Moscow, 1971; Academic, New York, 1980).

    Google Scholar 

  76. C. Thompson, R. D. Blandford, Ch. R. Evans, and E. S. Phinney, Astrophys. J. 422, 304 (1994).

    Article  ADS  Google Scholar 

  77. E. E. Clark, Mon. Not. Roy. Astron. Soc. 158, 233 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Bisnovatyi-Kogan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisnovatyi-Kogan, G.S., Tsupko, O.Y. Gravitational lensing in plasmic medium. Plasma Phys. Rep. 41, 562–581 (2015). https://doi.org/10.1134/S1063780X15070016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X15070016

Keywords

Navigation