Skip to main content
Log in

Temporal Behavior of Complex Systems: From Microworld to Macroworld

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The aim of this work is to discuss concisely the modern paradigm of the concept of time and to analyze its relevance and applicability in the context of classical and relativistic physics. We are touching briefly the different notion of time in classical and quantum mechanics and in special and general relativity to analyze their compatibility or incompatibility. In quantum mechanics we deal with the absolute character of Newtonian (dynamical) time, whereas in quantum field theories we consider the Minkowski metric as the background space-time (at least partially). Classical general relativity is characterized by a dynamical spacetime, but as regards to the quantum gravity the situation is more complicated. We discussed the consequences which these circumstances cause in the quantum gravity theory (“time paradox”) when attempt to operate with both the dynamical spacetime and the so-called “non-dynamical” time. We analyzed critically whether the last notion may be justified with the aid of an analogy with the “coarse grain” averaging procedure in statistical thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. L. Kuzemsky, Statistical Mechanics and the Physics of Many-Particle Model Systems (World Sci., Singapore, 2017).

    Book  MATH  Google Scholar 

  2. A. L. Kuzemsky, “Temporal evolution, directionality of time and irreversibility,” Riv. Nuovo Cimento 41, 513–574 (2018).

    Google Scholar 

  3. A. L. Kuzemsky, “Irreversible evolution of open systems and the nonequilibrium statistical operator method,” (2019), arXiv:1911.13203 cond-mat.stat-mech.

  4. A. L. Kuzemsky, “In search of time lost: Asymmetry of time and irreversibility in natural processes,” Found. Sci. 25, 597-645 (2020).

    Article  MATH  Google Scholar 

  5. A. L. Kuzemsky, “Time evolution of open nonequilibrium systems and irreversibility,” Phys. Part. Nucl. 51, 766-771 (2020).

    Article  Google Scholar 

  6. U. Lucia, G. Grisolia, and A. L. Kuzemsky, “Time, irreversibility and entropy production in nonequilibrium systems,” Entropy 22, 887 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  7. A. L. Kuzemsky, “The exotic thermodynamic states and negative absolute temperatures,” J. Low Temp. Phys. 206, 281-320 (2022).

    Article  ADS  Google Scholar 

  8. A. L. Kuzemsky, The Mystery of Time. Asymmetry of Time and Irreversibility in the Natural Processes (World Sci., Singapore, 2023).

    MATH  Google Scholar 

  9. D. I. Blokhintsev, Space and Time in the Microworld (Springer, Berlin, 1974; URSS, 2021).

  10. L. Sklar, Space, Time and Spacetime (Univ. California Press, 1977).

  11. S. Hawking and R. Penrose, The Nature of Space and Time (Princeton Univ. Press, Princeton, 1996; ACT, 2023).

  12. A. A. Grib, Problem of Time in Quantum Theory and General Relativity. RP 51/99, (Unicamp, Brazil, 1999).

  13. J. Barbour, The End of Time (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  14. P. C. W. Davies, About Time. Einstein’s Unfinished Revolution (Simon and Shuster Publ., New York, 2005).

    Google Scholar 

  15. L. Smolin, Time Reborn: From the Crisis in Physics to the Future of the Universe, (Houghton Mifflin Harcourt, 2013; Corpus, 2014).

  16. R. M. Unger and L. Smolin, The Singular Universe and the Reality of Time: A Proposal in Natural Philosophy (Cambridge Univ. Press, Cambridge, 2014).

    Book  MATH  Google Scholar 

  17. G. ’t Hooft and S. Vandoren, Time in Power Ten. Natural Phenomena and Their Timescales (World Scientific, Singapore, 2015).

    MATH  Google Scholar 

  18. E. Anderson, The Problem of Time: Quantum Mechanics Versus General Relativity (Springer, Berlin, 2017).

    Book  MATH  Google Scholar 

  19. C. Callender, What Makes Time Special? (Oxford Univ. Press, Oxford, 2017).

    Book  MATH  Google Scholar 

  20. G. t’ Hooft, “Time, the arrow of time, and quantum mechanics,” Front. Phys. 6, 1–10 (2018).

  21. C. Rovelli, The Order of Time (Riverhead Books, New York, 2018; Corpus, 2020).

  22. K. P. Y. Thebault, “The Problem of Time,” in The Routledge Companion to Philosophy of Physics, Ed. by E. Knox and A. Wilson (Routledge Press, London, 2021), Chap. 26.

    Google Scholar 

  23. D. N. Page, “Will entropy decrease in the universe recollapses?,” Phys. Rev. D 32, 2496–2499 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972; Mir, Moscow, 1975).

  25. A. A. Grib, Foundations of Modern Cosmology (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  26. S. Weinberg, Cosmology (Oxford Univ. Press, Oxford, 2008; Lenand, 2018).

  27. A. Zee, Einstein Gravity in a Nutshell (Princeton Univ. Press, Princeton, 2013).

    MATH  Google Scholar 

  28. G. Calcagni, Classical and Quantum Cosmology (Springer, Berlin, 2017).

    Book  MATH  Google Scholar 

  29. G. J. Whitrow, Time in History. Views of Time from Prehistory to the Present Day (Oxford Univ. Press, Oxford, 1988).

    Google Scholar 

  30. P. Yourgrau, Gödel Meets Einstein: Time Travel in the Gödel Universe (Open Court, New York, 1999).

    MATH  Google Scholar 

  31. P. Yourgrau, A World Without Time: The Forgotten Legacy of Gödel and Einstein (Basic Books, New York, 2006)

    MATH  Google Scholar 

  32. M. Gell-Mann, The Quark and the Jaguar. Adventures in the Simple and the Complex (Freeman and Co. New York, 1994).

    Book  MATH  Google Scholar 

  33. K. Mainzer, Thinking in Complexity. The Computational Dynamics of Matter, Mind, and Mankind (Springer, Berlin, 2007).

    MATH  Google Scholar 

  34. Complexity and the Arrow of Time, Ed. by C. H. Lineweaver, P. C. W. Davies, and M. Ruse (Cambridge Univ. Press, Cambridge, 2013).

    Google Scholar 

  35. C. G. Rodrigues, F. S. Vannucchi and R. Luzzi, “Complex dynamical systems and mathematical modelling. Research and reviews,” J. Phys. 8, 73–82 (2019).

    Google Scholar 

  36. M. Bunge and A. G. Maynez, “A relational theory of physical space,” Int. J. Theor. Phys. 15, 961–972, (1976).

    Article  MathSciNet  Google Scholar 

  37. J. Stachel, “Development of the Concepts of Space, Time and Space-Time from Newton to Einstein,” in 100 Years of Relativity. Space-Time Structure: Einstein and Beyond, Ed. by A. Ashtekar (World Sci., Singapore, 2005), pp. 3–36.

    MATH  Google Scholar 

  38. A. Grunbaum, “The Meaning of Time,” in Basic Issues in the Philosophy of Time, Ed. by E. Freeman and W. Sellars, (The Open Court Publ., LaSalle, 1971), pp. 195–228.

    Google Scholar 

  39. Physical Origins of Time Asymmetry, Ed. by J. J. Halliwell, J. Perez-Mercador, and W. H. Zurek (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  40. N. N. Bogoliubov, “On the stochastic processes in the dynamical systems,” Sov. J. Part. Nucl. 9, 205 (1978).

    ADS  MathSciNet  Google Scholar 

  41. D. N. Zubarev, Nonequilibrium Statistical Thermodynamics (Nauka, Moscow, 1971; Consultant Bureau, New York, 1974).

  42. R. Penrose, “On the second law of thermodynamics,” J. Stat. Phys. 77, 217–221 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe (Random House, New York, 2016; URSS, 2007).

  44. R. Penrose, Fashion, Faith, and Fantasy in the New Physics of the Universe (Princeton Univ. Press, Princeton, 2016; Piter, 2020).

  45. R. M. Wald, “Quantum gravity and time reversibility,” Phys. Rev. D 21, 2742 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  46. C. Liu, “The arrow of time in quantum gravity,” Philos. Science 60, 619–637 (1993).

    Article  MathSciNet  Google Scholar 

  47. V. Grandjean, The Asymmetric Nature of Time. Accounting for the Open Future and the Fixed Past (Springer, Berlin, 2022).

    Book  Google Scholar 

  48. G. W. Mackey, “Ergodic theory and its significance for statistical mechanics and probability theory,” Adv. Math. 12, 178–268 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  49. M. C. Mackey, “The dynamic origin of increasing entropy,” Rev. Mod. Phys. 61, 981–1015 (1989).

    Article  ADS  Google Scholar 

  50. M. C. Mackey, Time’s Arrow: The Origin of Thermodynamic Behavior (Springer, Berlin, 1992).

    Google Scholar 

  51. W. G. Hoover and C. G. Hoover, “Time-irreversibility is hidden within Newtonian mechanics,” Mol. Phys. 116, 3085–3096 (2018).

    Article  ADS  Google Scholar 

  52. A. Macias and H. Quevedo, “Time paradox in quantum gravity,” (2006). arXiv:gr-qc/0610057v1.

  53. A. Macias and A. Camacho, “On the incompatibility between quantum theory and general relativity,” Phys. Lett. B 663, 99–102 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. N. Huggett, T. Vistarini, and C. Wuthrich, “Time in Quantum Gravity,” in A Companion to the Philosophy of Time, Ed. by A. Bardon and H. Dyke (Wiley, New York, 2013), pp. 242–261.

    Google Scholar 

  55. C. Wuthrich, “Quantum Gravity from General Relativity,” in The Routledge Companion to Philosophy of Physics (Taylor and Francis, London, 2021), Chap. 24.

    Google Scholar 

  56. J. Barbour, “Dynamics of pure shape, relativity, and the problem of time,” Lect. Notes Phys. 633, 15–35 (2004).

    Book  MATH  Google Scholar 

  57. C. Rovelli, “Quantum Gravity,” in Handbook of the Philosophy of Physics, Ed. by J. Butterfield and J. Earman (North-Holland, Amsterdam, 2007), pp. 1287–1330.

    Google Scholar 

  58. C. Rovelli, Quantum Gravity (Cambridge Univ. Press, Cambridge, 2007).

    MATH  Google Scholar 

  59. C. Rovelli, Reality Is Not What It Seems: The Journey to Quantum Gravity (Riverhead Books, 2018; Piter, 2020).

  60. C. Rovelli, “Space and Time in Loop Quantum Gravity” in Beyond Spacetime: The Philosophical Foundations of Quantum Gravity, Ed. by B. Le Biha, K. Matsubara, and Ch. Wuthrich (2018). arXiv:1802.02382 gr-qc.

  61. C. Rovelli, Covariant Loop Quantum Gravity (An Elementary Introduction to Quantum Gravity and Spinfoam Theory) (Cambridge Univ. Press, Cambridge, 2020).

    MATH  Google Scholar 

  62. A. Einstein, “Geometry and Experience,” in Ideas and Opinions (Crown Press, 1995).

    Google Scholar 

  63. A. Einstein, “The Problem of Space, Ether and the Field in Physics,” in Beyond Geometry: Classic Papers from Riemann to Einstein, Ed. by P. Pesic (Dover, New York, 2007), p. 187.

    Google Scholar 

  64. H. Minkowski, “Raum und Zeit,” Phys. Z. 10, 104–111 (1909).

    MATH  Google Scholar 

  65. H. Minkowski, Spacetime: A Hundred Years Later, Ed. by V. Petkov (Springer, Berlin, 2010).

    Google Scholar 

  66. A. Einstein, The Meaning of Relativity, 5th ed. (Princeton Univ. Press, Princeton, 1974).

    MATH  Google Scholar 

  67. 100 Years of Relativity. Space-Time Structure: Einstein and Beyond, Ed. by A. Ashtekar (World Sci., Singapore, 2005).

    MATH  Google Scholar 

  68. S. J. Prokhovnik, The Logic of Special Relativity (Cambridge Univ. Press, London, 1967).

    Google Scholar 

  69. R. M. Wald, General Relativity (Univ. Chicago Press, 1984).

  70. R. M. Wald, Space, Time, and Gravity: The Theory of the Big Bang and Black Holes (Univ. Chicago Press, 1992).

  71. H. R. Brown, Physical Relativity: Space-Time Structure from a Dynamical Perspective (Oxford Univ. Press, Oxford, 2005).

    Book  MATH  Google Scholar 

  72. W. Rindler, Relativity: Special, General, and Cosmological (Oxford Univ. Press, Oxford, 2006).

    MATH  Google Scholar 

  73. N. D. Mermin, It’s About Time: Understanding Einstein’s Relativity (Princeton Univ. Press, Princeton, 2009).

    MATH  Google Scholar 

  74. J. Bros, “The geometry of relativistic spacetime: From Euclid’s geometry to Minkowski’s spacetime,” Seminaire Poincare 1, 1–45 (2005).

    Google Scholar 

  75. F. Catoni, D. Boccaletti, R. Cannata, V. Catoni, and P. Zampetti, Geometry of Minkowski Space-Time (Springer, Berlin, 2011).

    Book  MATH  Google Scholar 

  76. G. L. Naber, Geometry of Minkowski Spacetime. An Introduction to the Mathematics of the Special Theory of Relativity (Springer, Berlin, 2011).

    MATH  Google Scholar 

  77. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W. A. Freeman Press, 1970; Mir, Moscow, 1977).

  78. F. Girelli, S. Liberati, and L. Sindoni, “Is the notion of time really fundamental?,” Symmetry 3, 389–401 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. B. Skow, “What makes time different from space?,” Nous 41, 227–252 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  80. G. Musser, “What is spacetime?,” Nature 557, S3–S6 (2018).

    Article  ADS  Google Scholar 

  81. P. G. Bergmann, “’Space and time in the microworld’ by D. I. Blokhintsev,” Phys. Today 27, 50 (1974).

    Google Scholar 

  82. P. G. Bergmann, “Introduction of true observables into the quantum field equations.” Nuovo Cimento 3, 1177–1185 (1956).

    Article  MathSciNet  Google Scholar 

  83. P. G. Bergmann, “Observables in general relativity,” Rev. Mod. Phys. 33, 510–515 (1961).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. P. G. Bergmann, “Observables in General Relativity,” in Gravitational Measurements, Fundamental Metrology and Constants, Ed. by V. De Sabbata and V. N. Melnikov, NATO ASI Series, Vol. 230 (Springer, 1988).

  85. J. B. Pitts, “Peter Bergmann on observables in Hamiltonian general relativity: A historical-critical investigation,” Studies in History Philos. Sci., Part B 95, 1–27 (2022).

    Google Scholar 

  86. R. F. Baierlein, D. H. Sharp, and J. A. Wheeler, “Three-dimensional geometry as carrier of information about time,” Phys. Rev. 126, 1864 (1962).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. C. Rovelli, “What is observable in classical and quantum gravity?,” Class. Quant. Grav. 8, 297–316 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  88. J. N. Goldberg and D.C. Robinson, “Observables in general relativity,” Acta Phys. Pol. A 85, 677–684 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  89. C. Rovelli, “GPS observables in general relativity,” Phys. Rev. D 65, 044017 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  90. J. M. Pons, D. C. Salisbury, and K. A. Sundermeyer, “Observables in classical canonical gravity: Folklore demystified,” J. Phys.: Conf. Ser. 222, 012018 (2010).

    Google Scholar 

  91. J. McConnell, Quantum Particle Dynamics (North Holland, Amsterdam, 1960; Izd. Inostr. Lit., Moscow, 1962).

  92. A. O. Barut, Electrodynamics and Classical Theory of Fields and Particles (Dover, New York, 1980).

    Google Scholar 

  93. E. J. Post, Formal Structure of Electromagnetics: General Covariance and Electromagnetics (Dover, New York, 1997).

  94. M. B. Valente, “Time in the theory of relativity: Inertial time, light clocks, and proper time,” J. Gen. Philos. Sci. 50, 13–27 (2019).

    Article  MathSciNet  Google Scholar 

  95. M. Ludvigsen, General Relativity: A Geometric Approach (Cambridge Univ. Press, Cambridge, 1999).

    Book  MATH  Google Scholar 

  96. J. B. Hartle, Gravity: An Introduction to Einstein’s General Relativity (Addison-Wesley, San Francisco, 2003).

    Google Scholar 

  97. G. ’t Hooft, Introduction to General Relativity (Rinton Press, 2001).

    MATH  Google Scholar 

  98. O. Gron and S. Hervik, Einstein’s General Theory of Relativity (Springer, Berlin, 2007).

    Book  MATH  Google Scholar 

  99. N. Straumann, General Relativity (Springer, Berlin, 2013).

    Book  MATH  Google Scholar 

  100. General Relativity and Gravitation: A Centennial Perspective, Ed. by A. Ashtekar, B. K. Berger, (Cambridge Univ. Press, Cambridge, 2015).

    MATH  Google Scholar 

  101. S. Carroll, Spacetime and Geometry. An Introduction to General Relativity (Cambridge Univ. Press, Cambridge, 2019).

    MATH  Google Scholar 

  102. Thinking About Space and Time. 100 Years of Applying and Interpreting General Relativity, Ed. by C. Beisbart, T. Sauer, and C. Wuthrich (Springer, Berlin, 2020).

    MATH  Google Scholar 

  103. A. Sasane, Mathematical Introduction to General Relativity (World Sci., Singapore, 2021).

    Book  MATH  Google Scholar 

  104. S. Chandrasekhar, “Einstein and general relativity: Historical perspective,” Am. J. Phys. 47, 212–217 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  105. N. Straumann, “Einstein’s ’Zurich Notebook’ and his journey to general relativity,” Ann. Phys. (Berlin) 523, 488–500, (2011).

    Article  ADS  MATH  Google Scholar 

  106. J. C. Baez and E. F. Bunn, “The meaning of Einstein’s equation,” Am. J. Phys. 73, 644–652 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  107. D. Lovelock, “The four-dimensionality of space and the Einstein tensor,” J. Math. Phys. 13, 874–876 (1972).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  108. R. Gautreau, “Newton’s absolute time and space in general relativity,” Am. J. Phys. 68, 350–366 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. R. J. Cook, “Physical time and physical space in general relativity,” Am. J. Phys. 72, 214–219 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  110. A. Walstad, “The equivalence principle,” Am. J. Phys. 47, 565–566 (1979).

    Article  ADS  Google Scholar 

  111. I. Giufolini and J. A. Wheeler, Gravitation and Inertia (Princeton Univ. Press, Princeton, 1995).

    Book  Google Scholar 

  112. A. G. Lebed, Breakdown of Einstein’s Equivalence Principle (World Sci., Singapore, 2022).

    Book  MATH  Google Scholar 

  113. H. W. Crater, “General covariance, Lorentz covariance, the Lorentz force, and the Maxwell equations,” Am. J. Phys. 62, 923 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  114. J. Earman, “Covariance, invariance, and the equivalence of frames,” Found. Phys. 4, 267–289 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  115. H. V. Fagundes, “The principle of general covariance and the principle of equivalence: Two distinct concepts,” Rev. Bras. Fis. 10, 165–171, (1980).

    Google Scholar 

  116. M. Henneaux and C. Teitelboim, “The cosmological constant and general covariance,” Phys. Lett. B 222, 195–199 (1989).

    Article  ADS  Google Scholar 

  117. J. Norton, “General covariance and the foundations of general relativity: Eight decades of dispute,” Rep. Prog. Phys. 56, 791–858 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  118. J. Norton, “Did Einstein stumble? The debate over general covariance,” Erkenntnis 42, 223–245 (1995).

    Article  MathSciNet  Google Scholar 

  119. G. F. R. Ellis and D. R. Matravers, “General covariance in general relativity?,” Gen. Rel. Grav. 27, 777–788 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  120. J.-C. Pissondes, “Covariance in general relativity and scale-covariance in scale-relativity theory, quadratic invariants and Leibniz rule,” Chaos, Solitons and Fractals 10, 513–541 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  121. S. Sternberg, “General covariance and harmonic maps,” Proc. Natl. Acad. Sci. USA 96, 8845–8848 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  122. D. Dieks, “Another look at general covariance and the equivalence of reference frames,” Stud. Hist. Philos. Mod. Phys. 37, 174–191 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  123. L. Petruzziello, “A dissertation on general covariance and its application in particle physics,” J. Phys.: Conf. Ser. 1612, 012021 (2020).

  124. J. K. Cosgrove, “Einstein’s principle of equivalence and the heuristic significance of general covariance,” Found. Phys. 51, 27 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  125. M. H. Emam, Covariant Physics: From Classical Mechanics to General Relativity and Beyond (Oxford Univ. Press, Oxford, 2021).

    Book  MATH  Google Scholar 

  126. J. B. Barbour, The Discovery of Dynamics. A Study from a Machian Point of View of the Discovery and the Structure of Dynamical Theories (Oxford Univ. Press, Oxford, 2001).

    Google Scholar 

  127. J. North, “Formulations of Classical Mechanics,” in The Routledge Companion to Philosophy of Physics (Taylor and Francis, London, 2021), Chap. 2.

    Google Scholar 

  128. J. Barbour, “Relationism in Classical Dynamics,” in The Routledge Companion to Philosophy of Physics (Taylor and Francis, London, 2021), Chap. 4.

    Google Scholar 

  129. D. K. Arrowsmith, C. M. Place, and C. H. Place, An Introduction to Dynamical Systems (Cambridge Univ. Press, Cambridge, 1990).

    MATH  Google Scholar 

  130. V. Guillemin and S. Sternberg, Symplectic Techniques in Physics (Cambridge Univ. Press, Cambridge, 1993).

    MATH  Google Scholar 

  131. S. Sternberg, Group Theory and Physics (Cambridge Univ. Press, Cambridge, 1994).

    MATH  Google Scholar 

  132. G. Vilasi, Hamiltonian Dynamics (World Sci., Singapore, 2001).

    Book  MATH  Google Scholar 

  133. M. Brin and G. Stuck, Introduction to Dynamical Systems (Cambridge Univ. Press, Cambridge, 2004).

    MATH  Google Scholar 

  134. E. R. Scheinerman, Invitation to Dynamical Systems (Dover, New York, 2012).

    MATH  Google Scholar 

  135. R. J. Brown, A Modern Introduction to Dynamical Systems (Oxford Univ. Press, Oxford, 2018).

    MATH  Google Scholar 

  136. F. M. L. Amirouche, Fundamentals of Multibody Dynamics (Springer-Birkhauser, Berlin, 2006).

    MATH  Google Scholar 

  137. G. Belot, “The Representation of Time and Change in Mechanics,” in Handbook of the Philosophy of Physics, Ed. by J. Butterfield and J. Earman (North-Holland, Amsterdam, 2007), pp. 133–228.

    Google Scholar 

  138. G. Belot, “Time in Classical and Relativistic Physics,” in A Companion to the Philosophy of Time, Ed. by A. Bardon and H. Dyke (Wiley, New York, 2013), pp. 184–200.

    Google Scholar 

  139. J. Butterfield, “On Time in Quantum Physics,” in A Companion to the Philosophy of Time, Ed. by A. Bardon and H. Dyke (Wiley, New York, 2013), pp. 220–241.

    Google Scholar 

  140. J. Butterfield, “On Symplectic Reduction in Classical Mechanics,” in Handbook of the Philosophy of Physics, Ed. by J. Butterfield and J. Earman (North-Holland, Amsterdam, 2007), pp. 1–132.

    Google Scholar 

  141. K. P. Y. Thebault, “Symplectic reduction and the problem of time in nonrelativistic mechanics,” Br. J. Philos. Sci. 12, 789–824 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  142. L. Smolin, Three Roads to Quantum Gravity (Basic Books, 2001).

    MATH  Google Scholar 

  143. L. Smolin, “The Case for Background Independence,” in The Structural Foundations of Quantum Gravity, Ed. by D. Rickles, S. French, and J. T. Saatsi (Oxford Univ. Press, Oxford, 2006), Chap. 7.

    MATH  Google Scholar 

  144. S. Mandelstam, “Quantization of the gravitational field.” Ann. Phys. (NY) 19, 25–66 (1962).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  145. A. Ashtekar and R. Geroch, “Quantum theory of gravitation,” Rep. Prog. Phys. 37, 1211–56 (1974).

    Article  ADS  Google Scholar 

  146. J. Butterfield and C. J. Isham, “On the Emergence of Time in Quantum Gravity,” in The Arguments of Time, Ed. by J. Butterfield (Oxford Univ. Press, Oxford, 1999).

    MATH  Google Scholar 

  147. C. Rovelli, “Notes for a brief history of quantum gravity,” (2001). arXiv:gr-qc/0006061v3.

  148. Quantum Gravity. From Theory to Experimental Search, Ed. by D. Giulini, C. Kiefer, and C. Lammerzahl (Springer, Berlin, 2003).

    Google Scholar 

  149. C. Kiefer, “Quantum cosmology and the arrow of time,” Braz. J. Phys. 35, 296–299 (2005).

    Article  ADS  Google Scholar 

  150. C. Kiefer, “Quantum gravity: General introduction and recent developments,” Ann. Phys. (Berlin) 518, 129–148 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  151. C. Kiefer, Quantum Gravity (Oxford Univ. Press, Oxford, 2007).

    Book  MATH  Google Scholar 

  152. C. Kiefer, “Does time exist in quantum gravity?,” (2009). arXiv:0909.3767 gr-qc.

  153. C. Kiefer, “Conceptual problems in quantum gravity and quantum cosmology,” ISRN Math. Phys. 2013, 509316 (2013).

    Article  ADS  MATH  Google Scholar 

  154. N.P. Landsman, “Between Classical and Quantum,” in Handbook of the Philosophy of Physics, Ed. by J. Butterfield and J. Earman (North-Holland, Amsterdam, 2007), pp. 417–554.

    Google Scholar 

  155. M. Bojowald, Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity (Cambridge Univ. Press, Cambridge, 2011).

    MATH  Google Scholar 

  156. M. Bojowald, Quantum Cosmology. A Fundamental Description of the Universe (Springer, Berlin, 2011).

    MATH  Google Scholar 

  157. A. Perez, “Spin foam models for quantum gravity,” Class. Quant. Grav. 20, R43–R104 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  158. The Quantum Structure of Space and Time, Ed. by D. Gross, M. Henneaux, and A. Sevrin (World Sci., Singapore, 2007).

    Google Scholar 

  159. R. Gambini and J. Pullin, “The solution to the problem of time in quantum gravity also solves the time of arrival problem in quantum mechanics,” New J. Phys. 24, 053011 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  160. C. Rovelli, “Statistical mechanics of gravity and the thermodynamical origin of time,” Class. Quant. Grav. 10, 1549–1566 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  161. A. Connes and C. Rovelli, “Von Neumann algebra automorphisms and time-thermodynamics relation in generally covariant quantum theories,” Class. Quant. Grav. 11, 2899–2917 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  162. C. Rovelli, “Forget time,” Found. Phys. 41, 1475–1490 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  163. A. Vilenkin, “Creation of universes from nothing,” Phys. Lett. B 117, 25–28 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  164. A. Borde, A. Guth, and A. Vilenkin, “Inflationary spacetimes are incomplete in past directions,” Phys. Rev. Lett. 90, 151301 (2003).

    Article  ADS  Google Scholar 

  165. V. F. Mukhanov, Physical Foundations of Cosmology (Cambridge Univ. Press, Cambridge, 2005).

    Book  MATH  Google Scholar 

  166. J. D. Barrow, “Dimensionality,” Phil. Trans. Roy. Soc. London A 310, 337–346 (1983).

    Article  ADS  Google Scholar 

  167. C. Lammerzahl and A. Macias, “On the dimensionality of space-time,” J. Math. Phys. 34, 4540–4553 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  168. C. J. Borde, “Base units of the SI, fundamental constants and modern quantum physics,” Phil. Trans. R. Soc. London A 363, 2177–2201 (2005).

    ADS  MathSciNet  Google Scholar 

  169. J. D. Barrow, The Constants of Nature: The Numbers That Encode the Deepest Secrets of the Universe (Vintage Press, London, 2009).

    MATH  Google Scholar 

  170. B. Lesche, “The c = ħ = G = 1 -question,” Studies in history and philosophy of modern physics 47, 107–116 (2014).

  171. J. E. Bayfield, Quantum Evolution: An Introduction to Time-Dependent Quantum Mechanics (Wiley, New York, 1999).

    Google Scholar 

  172. D. J. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspective (Univ. Sci. Books, CA, 2007).

    Google Scholar 

  173. W. Pauli, General Principles of Quantum Mechanics (Springer, Berlin, 1980; Gostekhizdat, Moscow, 1947).

  174. A. Jaffe, “Stop all the clocks,” Nature 556, 304–305 (2018).

    Article  ADS  Google Scholar 

  175. B. S. DeWitt, “Quantum theory of gravity. I. The canonical theory,” Phys. Rev. 160, 1113–1148 (1967).

    Article  ADS  MATH  Google Scholar 

  176. H. Kodama, “Holomorphic wave function of the Universe,” Phys. Rev. D 42, 2548–2563 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  177. J. B. Hartle and S. W. Hawking, “Wave function of the Universe,” Phys. Rev. D 28, 2960–2975 (1983).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  178. N. Swanson, “Can quantum thermodynamics save time?,” Philos. Sci. 88, 281–302 (2021).

    Article  MathSciNet  Google Scholar 

  179. B. Swingle, “Spacetime from entanglement,” Annu. Rev. Cond. Matt. Phys. 9, 345–358 (2018).

    Article  ADS  Google Scholar 

  180. L. S. Garcia-Colin and J. L. Del Rio, “Dynamics of coarse grained variables I. Exact Results,” Physica A 96, 606–618 (1979).

    Article  ADS  Google Scholar 

  181. G. Nicolis, S. Martinez, and E. Tirapegui, “Finite coarse-graining and Chapman-Kolmogorov equation in conservative dynamical systems,” Chaos, Solitons Fractals 1, 25–37 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  182. G. Nicolis and D. Daems, “Probabilistic and thermodynamic aspects of dynamical systems,” Chaos 8, 311–320 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  183. Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena, Ed. by A. N. Gorban, N. K. Kazantzis, I. G. Kevrekidis, H. C. Ottinger, and C. Theodoropoulos (Springer, Berlin, 2006).

    Google Scholar 

  184. P. Castiglione, M. Falcioni, A. Lesne, and A. Vulpiani, Chaos and Coarse Graining in Statistical Mechanics (Cambridge Univ. Press, Cambridge, 2008).

    Book  MATH  Google Scholar 

  185. V. V. Kozlov, “Nonequilibrium statistical mechanics of weakly ergodic systems,” Regular and Chaotic Dynamics 25, 674–688 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  186. V. I. Arnold, “From averaging to statistical physics,” Problems of the Modern Mathematical Physics, Proc. Steklov Inst. Math. 228, 184—190 (2000).

    Google Scholar 

  187. R. C. Tolman, “On the problem of the entropy of the Universe as a whole,” Phys. Rev. 37, 1639–1660 (1931).

    Article  ADS  MATH  Google Scholar 

  188. V. M. Patel and C. H. Lineweaver, “Solutions to the cosmic initial entropy problem without equilibrium initial conditions,” Entropy 19, 411 (2017).

    Article  ADS  Google Scholar 

  189. J. Jeans, The Universe Around Us (Macmillan, London, 1929; Gos. Tekh.-Teor. Izd., Moscow, 1932).

  190. R. Penrose, The Emperor’s New Mind (Oxford Univ. Press, Oxford, 1989).

    Book  Google Scholar 

  191. M. Gell-Mann and J. B. Hartle, “Quasiclassical coarse graining and thermodynamic entropy,” Phys. Rev. A 76, 022104 (2007).

    Article  ADS  Google Scholar 

  192. N. G. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd ed. (North-Holland, Amsterdam, 2007).

    MATH  Google Scholar 

  193. Y. Tanimura, “Stochastic Liouville, Langevin, Fokker-Planck, and master equation approaches to quantum dissipative systems,” J. Phys. Soc. Jpn. 75, 082001-1 (2006).

    Article  ADS  Google Scholar 

  194. R. Mahnke, J. Kaupuzs, and I. Lubashevsky, Physics of Stochastic Processes: How Randomness Acts in Time (Wiley-VCH, New York, 2008).

    Book  MATH  Google Scholar 

  195. T. Tome and M. J. de Oliveira, Stochastic Dynamics and Irreversibility, (Springer, Berlin, 2015).

    Book  MATH  Google Scholar 

  196. A. L. Kuzemsky, “Probability, information and statistical physics,” Int. J. Theor. Phys. 55, 1378–1404 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  197. N. N. Bogoliubov and Yu. A. Mitropolsky, Asymptotical Methods in the Theory of Nonlinear Oscillations (Gordon and Breach, New York, 1961; Fizmatlit, Moscow, 1957).

  198. V. V. Kozlov, “Thermodynamics of Hamiltonian systems and Gibbs distribution,” Dokl. Math. 61, 123–125 (2000).

    Google Scholar 

  199. V. V. Kozlov, “On justification of Gibbs distribution,” Regular and Chaotic Dynamics 7, 1–10 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  200. R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford Univ. Press, Oxford, 2001).

    MATH  Google Scholar 

  201. R. A. Minlos, Introduction to Mathematical Statistical Physics (University Lecture Series) (Am. Math. Soc., 2000; MTsNMO, 2002).

  202. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics: Statistical Physics, Vol. 5. (Nauka, Moscow, 1976; Pergamon Press, London, 1980).

  203. N. N. Bogoliubov, “Problems of Dynamical Theory in Statistical Physics,” in Studies in Statistical Mechanics, Ed. by J. de Boer and G. E. Uhlenbeck (North-Holland, Amsterdam, 1962), Vol. 1, pp. 1–118.

    Google Scholar 

  204. A. L. Kuzemsky, “Thermodynamic limit in statistical physics,” Int. J. Mod. Phys. B 28, 1430004 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  205. M. Gell-Mann and M. L. Goldberger, “The formal theory of scattering,” Phys. Rev. 91, 398–408 (1953).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  206. S. Weinberg, Lectures on Quantum Mechanics (Cambridge Univ. Press, Cambridge, 2015).

    Book  MATH  Google Scholar 

  207. L. Smolin, Einstein’s Unfinished Revolution: The Search for What Lies Beyond the Quantum (Penguin Press, New York, 2019).

    Google Scholar 

  208. P. C. W. Davies, “John Archibald Wheeler and the Clash of Ideas,” in Science and Ultimate Reality: Quantum Theory, Cosmology and Complexity, Honoring John Wheeler’s 90th Birthday, Ed. by J. D. Barrow, P. C. W. Davies, and C. L. Harper (Cambridge Univ. Press, Cambridge, 2004), pp. 3–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Kuzemsky.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzemsky, A.L. Temporal Behavior of Complex Systems: From Microworld to Macroworld. Phys. Part. Nuclei 54, 843–868 (2023). https://doi.org/10.1134/S1063779623050155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779623050155

Navigation