Skip to main content
Log in

Coherence in Scattering of Massive Weakly Interacting Neutral Particles of Nuclei

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The paper presents a novel approach to the description of the nonrelativistic weak interaction of a massive neutral particle (lepton) and a nucleus, in which the latter retains its integrity. The cross section of such a process is a sum of the elastic (or coherent) contribution, when the nucleus remains in its original state, and the inelastic (incoherent) contribution, when the nucleus is in an excited state. Smooth transition from elastic scattering to inelastic scattering is governed by the dependence of the nuclear form factors on the momentum transferred to the nucleus. The intensity of the weak interaction is set by the parameters that determine the contributions to the probability amplitude from the scalar products of the leptonic and nucleon currents. The resulting expressions are of interest, at least in the problem of direct detection of neutral massive weakly interacting particles of dark matter, since in this case, in contrast to the generally accepted approach, both elastic and inelastic processes are simultaneously considered. It is shown that the presence of the inelastic contribution accompanied by emission of characteristic radiation (photons) from the deexcitation of the nucleus turns out to be decisive when the coherent cross section is strongly suppressed or cannot be detected. The former takes place if the corresponding interaction constant is close to zero or if the momentum transferred to the nucleus is too great and the coherence condition is not met. When the measurable recoil energy of the nucleus is below the detection threshold, the coherent cross section cannot be seen at all. In this situation, “inelastic” photons are the only detectable signal of the interaction between dark matter particles and matter. Therefore in order to extract maximum information about dark matter particles, one should plan experiments aimed at the direct detection of dark matter particles in a setting that allows one to detect both the recoil energy of the nucleus and the gamma quanta from the deexcitation of the nucleus

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. Except the DAMA/LIBRA results [11], which are ignored without adequate refutation.

  2. The square of the matrix element \({{\left| {{{\mathcal{M}}_{{mn}}}} \right|}^{2}}\) usually does not depend on the angle ϕ. Integration is performed over it.

  3. Derivation of formula does not depend on the explicit form of combinations of \(\gamma \)-matrices \(O_{k}^{\mu }\) (see [13]).

  4. Hereinafter, unless stated otherwise, the proton mass is taken to be equal to the neutron mass \(m = {{m}_{p}} = {{m}_{n}}\).

  5. To be in correspondence to [13], the product \(\chi _{m}^{*}(\{ {{r}^{{(k)}}}\} ){{\chi }_{n}}(\{ r\} )\), like \(\chi _{n}^{*}(\{ r\} ){{\chi }_{n}}(\{ r\} )\), will be considered equal to unity. Validity of this assumption is a subject for a separate study.

  6. The kinematic λ function is defined by the expression \({{\lambda }^{2}}(s,{{m}^{2}},m_{\chi }^{2}) \equiv {{s}^{2}} + {{m}^{4}} + m_{\chi }^{4} - 2s{{m}^{2}}\)\( - \,\,2sm_{\chi }^{2} - 2{{m}^{2}}m_{\chi }^{2} = (s - {{(m + {{m}_{\chi }})}^{2}})(s - {{(m - {{m}_{\chi }})}^{2}})\).

  7. Formally due to the condition \(\xi _{ - }^{2} = {{E}_{\chi }} - {{m}_{\chi }} \to 0\) and \(\lambda _{ - }^{2} = E - m \to 0\).

  8. For simplicity, we consider in all further calculations that \({{g}_{{\text{i}}}} \simeq {{g}_{{\text{c}}}} \simeq 1\).

  9. Constant quantities: \(1{\text{ fm}} = \frac{1}{{0.1973{\text{ GeV}}}} = \frac{1}{{197.3{\text{ MeV}}}}\), \({\kern 1pt} {\text{GeV}}\,{\kern 1pt} {{ = 10}^{3}}{\kern 1pt} {\text{MeV}}{\kern 1pt} ,\;{\kern 1pt} {\text{MeV}}{\kern 1pt} = 1\).

  10.  As was already mentioned, for each of the nuclei this moment determines \(T_{A}^{{\max }}\) in the corresponding plots.

  11.  Where it is stated that the scalar interaction is noticeably weaker than the spin-dependent one, because the initial and final nuclear states change, and only the spin-dependent interaction should be considered.

  12.  The first excited 3/2+ state of 129Xe is at 39.6 keV (half-life 0.97 ns) above the ground 1/2+ state [59]. The first excited 1/2+ state of 131Xe has the energy of 80.2 keV above the ground 3/2+ state (0.48 ns) [60].

  13.  This “classical” inelastic approach should not be mixed up with “inelasticity” caused by the transition of the incident χ1 lepton (of dark matter) to a more massive χ2 lepton (also from dark sector). The nucleus is thought of as being unchanged, i.e., interacting coherently. See, for example [14, 17, 18, 20, 23, 24, 35, 61].

  14.  In 127I, the first excited state 7/2+ is 57.6 keV above the ground state. In 133Cs, the lowest state 5/2+ has the energy of 81 keV.

  15.  Note that nucleons in [1] are not free, and the nuclear structure is considered in terms of nuclear form factors.

  16.  The relativistic version of this description is considered separately [75].

REFERENCES

  1. V. A. Bednyakov and D. V. Naumov, “Coherency and incoherency in neutrino-nucleus elastic and inelastic scattering,” Phys. Rev. D 98, 053004 (2018). arXiv 1806.08768.

  2. V. A. Bednyakov and D. V. Naumov, “On coherent neutrino and antineutrino scattering off nuclei,” Phys. Part. Nucl. Lett. 16, 638–646 (2019). arXiv 1904.03119.

  3. V. A. Bednyakov and D. V. Naumov, “Concept of coherence in neutrino and antineutrino scattering off nuclei,” Phys. Part. Nucl. 52, 39–154 (2021). arXiv 2021.0000.

  4. D. Akimov et al. (COHERENT Collab.), “Observation of coherent elastic neutrino-nucleus scattering,” Science 357, 1123—1126 (2017). arXiv 1708.01294.

  5. V. A. Bednyakov, D. V. Naumov, and I. V. Titkova, “On the possibility of separating coherent and incoherent (anti)neutrino scattering on nuclei,” Phys. At. Nucl. 84, 314–327 (2021).

    Article  Google Scholar 

  6. V. A. Bednyakov, “Is it possible to discover a dark matter particle with an accelerator?,” Phys. Part. Nucl. 47, 711–774 (2016). arXiv 1505.0438.

  7. D. K. Papoulias, R. Sahu, T. S. Kosmas, V. K. B. Kota, and B. Nayak, “Novel neutrino-floor and dark matter searches with deformed shell model calculations,” Adv. High Energy Phys. 2018, 6031362 (2018). arXiv 1804.11319.

  8. C. Boehm, D. G. Cerdeo, P. A. N. Machado, A. Campo, D. Olivares, and E. Reid, “How high is the neutrino floor?,” J. Cosmol. Astropart. Phys. 1901, 043 (2019). arXiv 1809.06385.

  9. J. Cooley, “Dark matter direct detection of classical WIMPs,” in Proceedings of Les Houches Summer School on Dark Matter, Les Houches, France, 2021 (2021). arXiv 2110.02359.

  10. S. Cebrián, “Review on dark matter searches,” in Proceedings of the 10th Symposium on Large TPCs for Low-Energy Rare Event Detection, Paris, France, 2021 (2021). arXiv 2205.06833.

  11. R. Bernabei et al., “Dark matter investigation with DAMA set-ups,” Int. J. Mod. Phys. A 37, 2240015 (2022).

    Article  ADS  Google Scholar 

  12. N. Hurtado, H. Mir, I. M. Shoemaker, E. Welch, and J. Wyenberg, “Dark matter-neutrino interconversion at COHERENT, direct detection, and the early Universe,” Phys. Rev. D 102, 015006 (2020). arXiv 2005.13384.

  13. P. Du, D. Egana-Ugrinovic, R. Essig, and M. Sholapurkar, “Sources of low-energy events in low-threshold dark-matter and neutrino detectors,” Phys. Rev. X 12, 011009 (2022). arXiv 2011.13939.

  14. M. Baryakhtar, A. Berlin, H. Liu, and N. Weiner, “Electromagnetic signals of inelastic dark matter scattering,” J. High Energy Phys. 06, 047 (2022). arXiv 2006.13918.

  15. A. Majumdar, D. K. Papoulias, and R. Srivastava, “Dark matter detectors as a novel probe for light new physics,” arXiv 2112.03309.

  16. G. Afek, D. Carney, and D. C. Moore, “Coherent scattering of low mass dark matter from optically trapped sensors,” Phys. Rev. Lett. 128, 101301 (2022). arXiv 2111.03597.

  17. G. F. Giudice, D. Kim, J.-C. Park, and S. Shin, “Inelastic boosted dark matter at direct detection experiments,” Phys. Lett. B 780, 543–552 (2018). arXiv 1712.07126.

  18. M. J. Zurowski, E. Barberio, and G. Busoni, “Inelastic dark matter and the SABRE experiment,” J. Cosmol. Astropart. Phys. 12, 014 (2020). arXiv 2005.10404.

  19. J.-W. Wang, A. Granelli, and P. Ullio, “Direct detection constraints on blazar-boosted dark matter,” Phys. Rev. Lett. 128, 221104 (2022). arXiv 2111.13644.

  20. J.-C. Feng, X.-W. Kang, C.-T. Lu, Y.-L. S. Tsai, and F.-S. Zhang, “Revising inelastic dark matter direct detection by including the cosmic ray acceleration,” J. High Energy Phys. 04, 080 (2022). arXiv 2110.08863.

  21. T. Emken, J. Frerick, S. Heeba, and F. Kahlhoefer, “Electron recoils from terrestrial upscattering of inelastic dark matter,” Phys. Rev. D 105, 055023 (2022). arXiv 2112.06930.

  22. A. Granelli, P. Ullio, and J.-W. Wang, “Blazar-boosted dark matter at Super-Kamiokande,” arXiv 2202.07598.

  23. A. Filimonova, S. Junius, L. Lopez Honorez, and S. Westhoff, “Inelastic Dirac dark matter,” J. High Energy Phys. 06, 048 (2022). arXiv 2201.08409.

  24. N. F. Bell, J. B. Dent, B. Dutta, J. Kumar, and J. L. Newstead, “Low-mass dark matter (in)direct detection with inelastic scattering,” arXiv 2208.08020.

  25. S. Tsuchida, N. Kanda, Y. Itoh, and M. Mori, “Dark matter signals on a laser interferometer,” Phys. Rev. D 101, 023005 (2020). arXiv 1909.00654.

  26. A. Coskuner, T. Trickle, Z. Zhang, and K. M. Zurek, “Directional detectability of dark matter with single phonon excitations: Target comparison,” Phys. Rev. D 105, 015010 (2022). arXiv 2102.09567.

  27. E. E. Boos, V. E. Bunichev, and S. S. Trykov, “Prospects for dark matter search at the super c-tau factory,” arXiv 2205.07364.

  28. V. V. Flambaum, B. T. McAllister, I. B. Samsonov, and M. E. Tobar, “Searching for scalar field dark matter using cavity resonators and capacitors,” arXiv 2207.14437.

  29. X. Fan, G. Gabrielse, P. W. Graham, R. Harnik, T. G. Myers, H. Ramani, B. A. D. Sukra, S. S. Y. Wong, and Y. Xiao, “One-electron quantum cyclotron as a milli-eV dark-photon detector,” arXiv 2208.06519.

  30. C. Blanco, R. Essig, M. Fernandez-Serra, H. Ramani, and O. Slone, “Dark matter direct detection with quantum dots,” arXiv 2208.05967.

  31. J. Billard, M. Pyle, S. Rajendran, and H. Ramani, “Calorimetric detection of dark matter,” arXiv 2208.05485.

  32. H. M. Araújo et al., “The MIGDAL experiment: Measuring a rare atomic process to aid the search for dark matter,” arXiv 2207.08284.

  33. V. A. Bednyakov, “A direct dark matter detection experiment is inevitable,” arXiv 2003.09422.

  34. T. R. Slatyer, “Les Houches lectures on indirect detection of dark matter,” in Proceedings of Les Houches Summer School on Dark Matter, Les Houches, France, 2021 (2021). arXiv 2109.02696.

  35. A. Aboubrahim, L. Althueser, M. Klasen, P. Nath, and C. Weinheimer, “Annual modulation of event rate and electron recoil energy in inelastic scattering direct detection experiments,” arXiv 2207.08621.

  36. M. Tanabashi et al. (Particle Data Group Collab.), “Review of particle physics,” Phys. Rev. D 98, 030001 (2018).

    Article  ADS  Google Scholar 

  37. M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley, Reading, USA, 1995; URSS, 2001).

  38. S. M. Bilenky, Introduction to Feynman Diagrams and Electroweak Interactions Physics (Frontieres, Gif-sur-Yvette, France, 1994; Ripol Classic, 2013), pp. 1–365.

  39. G. Bertone, D. Hooper, and J. Silk, “Particle dark matter: Evidence, candidates and constraints,” Phys. Rept. 405, 279–390 (2005), hep-ph/0404175.

  40. A. K. Drukier, K. Freese, and D. N. Spergel, “Detecting cold dark matter candidates,” Phys. Rev. D 33, 3495–3508 (1986).

    Article  ADS  Google Scholar 

  41. K. Freese, J. A. Frieman, and A. Gould, “Signal modulation in cold dark matter detection,” Phys. Rev D 37, 3388 (1988).

    Article  ADS  Google Scholar 

  42. J. D. Lewin and P. F. Smith, “Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil,” Astropart. Phys. 6, 87–112 (1996).

    Article  ADS  Google Scholar 

  43. G. Krnjaic et al., “Snowmass 2021 rare & precision frontier (RF6): Dark matter production at intensity-frontier experiments,” arXiv 2207.00597.

  44. D. Kim and K. T. Matchev, “How to prove that a ɆT excess at the LHC is not due to dark matter,” Phys. Rev. D 98, 055018 (2018). arXiv 1712.07620.

  45. D. Bardhan, S. Bhowmick, D. Ghosh, A. Guha, and D. Sachdeva, “Boosting through the darkness,” arXiv 2208.09405

  46. R. Xu et al. (CDEX Collab.), “Constraints on sub-GeV dark matter boosted by cosmic rays from CDEX-10 experiment at the China Jinping Underground Laboratory,” arXiv 2201.01704.

  47. C. Xia, Y.-H. Xu, and Y.-F. Zhou, “Azimuthal asymmetry in cosmic-ray boosted dark matter flux,” arXiv 2206.11454.

  48. G. Jungman, M. Kamionkowski, and K. Griest, “Supersymmetric dark matter,” Phys. Rept. 267, 195–373 (1996). hep-ph/9506380.

  49. D. J. Vergados., “Searching for cold dark matter,” J. Phys. G 22, 253–272 (1996). hep-ph/9504320.

    Article  ADS  Google Scholar 

  50. D. Z. Freedman, “Coherent effects of a weak neutral current,” Phys. Rev. D 9, 1389–1392 (1974).

    Article  ADS  Google Scholar 

  51. D. I. Blokhintsev, Fundamentals of Quantum Mechanics (Vysshaya Shkola, Moscow, 1963; Springer, 1964).

  52. A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin. Inc., New York, 1974; Mir, Moscow, 1977).

  53. V. A. Bednyakov, “Scalar products of fermion currents,” Phys. Part. Nucl. 52, 847–898 (2021).

    Article  Google Scholar 

  54. V. A. Bednyakov, “Coherency and incoherency in direct dark matter search,” To be published in 2023 in Phys. Part. Nucl.

  55. R. H. Helm, “Inelastic and elastic scattering of 187‑meV electrons from selected even-even nuclei,” Phys. Rev. 104, 1466–1475 (1956).

    Article  ADS  Google Scholar 

  56. R. Sahu, D. K. Papoulias, V. K. B. Kota, and T. S. Kosmas, “Elastic and inelastic scattering of neutrinos and weakly interacting massive particles on nuclei,” Phys. Rev. C 102, 035501 (2020). arXiv 2004.04055.

  57. C. McCabe, “Prospects for dark matter detection with inelastic transitions of xenon,” J. Cosmol. Astropart. Phys. 05(2016) 033 (2016). arXiv 1512.00460.

  58. L. Baudis, G. Kessler, P. Klos, R. F. Lang, J. Menéndez, S. Reichard, and A. Schwenk, “Signatures of dark matter scattering inelastically off nuclei,” Phys. Rev. D 88, 115014 (2013). arXiv 1309.0825.

  59. J. Timar, Z. Elekes, and B. Singh, “Nuclear data sheets for A = 129,” Nucl. Data Sheets 121, 143–394 (2014).

    Article  ADS  Google Scholar 

  60. Yu. Khazov, I. Mitropolsky, and A. Rodionov, “Nuclear data sheets for A = 131,” Nucl. Data Sheets 107, 2715–2930 (2006).

    Article  ADS  Google Scholar 

  61. E. Aprile et al. (XENON Collab.), “Search for inelastic scattering of WIMP dark matter in XENON1T,” Phys. Rev. D 103, 063028 (2021). arXiv 2011.10431.

  62. T. W. Donnelly and J. D. Walecka, “Electron scattering and nuclear structure,” Ann. Rev. Nucl. Part. Sci. 25, 329–405 (1975).

    Article  ADS  Google Scholar 

  63. P. C. Divari, “Coherent and incoherent neutral current scattering for supernova detection,” Adv. High Energy Phys. 2012, 379460 (2012).

    Article  MATH  Google Scholar 

  64. P. C. Divari, S. Galanopoulos, and G. A. Souliotis, “Coherent scattering of neutral-current neutrinos as a probe for supernova detection,” J. Phys. G 39, 095204 (2012).

    Article  ADS  Google Scholar 

  65. G. I. Lykasov and V. A. Bednyakov, “Neutrino-nucleus interactions at low energies within Fermi-liquid theory,” Phys. Rev. C 76, 014622 (2007). arXiv nucl-th/0703036.

  66. R. Sahu, V. K. B. Kota, and T. S. Kosmas, “Event rates for the scattering of weakly interacting massive particles from 23Na and 40Ar,” Particles 4, 75–92 (2021). arXiv 2009.10522.

  67. B. Dutta, W.-C. Huang, J. L. Newstead, and V. Pandey, “Inelastic nuclear scattering from neutrinos and dark matter,” arXiv 2206.08590.

  68. B. Abi et al. (DUNE Collab.), “Supernova neutrino burst detection with the Deep Underground Neutrino Experiment,” Eur. Phys. J. C 81, 423 (2021). arXiv 2008.06647.

  69. K. Abe et al. (Hyper-Kamiokande Collab.), “Physics potentials with the second Hyper-Kamiokande detector in Korea,” Prog. Theor. Exp. Phys. 2018, 063C01 (2018). arXiv 1611.06118.

  70. G. Arcadi, C. Döring, C. Hasterok, and S. Vogl, “Inelastic dark matter nucleus scattering,” J. Cosmol. Astropart. Phys. 12, 053 (2019). arXiv 1906.10466.

  71. T. De Forest, Jr., and J. D. Walecka, “Electron scattering and nuclear structure,” Adv. Phys. 15, 1–109 (1966).

    Article  ADS  Google Scholar 

  72. B. D. Serot, “Semileptonic weak and electromagnetic interactions with nuclei: nuclear current operators through order (v/c)2 (nucleon),” Nucl. Phys. A 308, 457–499 (1978).

    Article  ADS  Google Scholar 

  73. T. W. Donnelly and W. C. Haxton, “Multipole operators in semileptonic weak and electromagnetic interactions with nuclei,” Atom. Data Nucl. Data Tabl. 23, 103–176 (1979).

    Article  ADS  Google Scholar 

  74. M. Sajjad Athar, A. Fatima, and S. K. Singh, “Neutrinos and their interactions with matter,” arXiv 2206.13792.

  75. V. A. Bednyakov, “Scattering of the massive lepton on the nucleus. Vector currents,” To be published in 2023 in Phys. Part. Nucl.

Download references

ACKNOWLEDGMENTS

The author is grateful to V. Naumov, E. Yakushev, N. Russakovich, and I. Titkova for discussions and important comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Bednyakov.

Additional information

Translated by M. Potapov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bednyakov, V.A. Coherence in Scattering of Massive Weakly Interacting Neutral Particles of Nuclei. Phys. Part. Nuclei 54, 239–273 (2023). https://doi.org/10.1134/S1063779623020028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779623020028

Navigation