Skip to main content
Log in

Analytic Continuation in Lattice QC2D

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We simulate the lattice QC2D with \({{N}_{f}} = 2\) staggered fermionic action at imaginary and real quark chemical potential \({{\mu }_{q}}\) at one temperature slightly above \({{T}_{c}}\). We apply a few methods to make analytic continuation of the quark number density using our numerical results for imaginary \({{\mu }_{q}}\). Comparing the outcome of the analytic continuation procedures with our results at real \({{\mu }_{q}}\) we determine the most effective way to make the analytic continuation. We believe this method can be applied to thelattice QCD data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. J. Adams et al. (STAR Collab.), Nucl. Phys. A 757, 102–183 (2005); arXiv:nucl-ex/0501009 [nucl-ex].

    Article  ADS  Google Scholar 

  2. K. Aamodt et al. (ALICE Collab.), JINST 3, S08002 (2008).

  3. T. Ablyazimov et al. (CBM Collab.), Eur. Phys. J. A 53 (3), 60 (2017); arXiv:1607.01487 [nucl-ex].

  4. A. N. Sissakian et al. (NICA Collab.), J. Phys. G 36, 064069 (2009).

    Article  ADS  Google Scholar 

  5. R. Bellwied, S. Borsanyi, Z. Fodor, S. D. Katz, A. Pasztor, C. Ratti, and K. K. Szabo, Phys. Rev. D 92, 114505 (2015); arXiv:1507.04627 [hep-lat]

  6. H. T. Ding, S. Mukherjee, H. Ohno, P. Petreczky, and H. P. Schadler, Phys. Rev. D 92, 074043 (2015); arXiv: 1507.06637 [hep-lat].

  7. G. A. Almasi, B. Friman, K. Morita, P. M. Lo, and K. Redlich, Phys. Rev. D 100, 016016 (2019); arXiv: 1805.04441 [hep-ph].

  8. A. Bazavov et al. (HotQCD Collab.), Phys. Lett. B 795, 15–21 (2019); arXiv:1812.08235 [hep-lat].

  9. A. Bazavov, D. Bollweg, H. T. Ding, P. Enns, J. Goswami, P. Hegde, O. Kaczmarek, F. Karsch, R. Larsen, S. Mukherjee, et al., Phys. Rev. D 101, 074502 (2020); arXiv:2001.08530 [hep-lat].

  10. M. D’Elia and M. P. Lombardo, Phys. Rev. D 67, 014505 (2003); arXiv:hep-lat/0209146 [hep-lat].

    Article  ADS  Google Scholar 

  11. M. D’Elia and F. Sanfilippo, Phys. Rev. D 80, 014502 (2009); arXiv:0904.1400 [hep-lat].

    Article  ADS  Google Scholar 

  12. C. Bonati, P. de Forcrand, M. D’Elia, O. Philipsen, and F. Sanfilippo, Phys. Rev. D 90, 074030 (2014); arXiv: 1408.5086 [hep-lat].

    Article  ADS  Google Scholar 

  13. M. D’Elia, G. Gagliardi, and F. Sanfilippo, Phys. Rev. D 95, 094503 (2017); arXiv:1611.08285 [hep-lat].

  14. P. Alba, R. Bellwied, S. Borsanyi, Z. Fodor, J. Günther, S. D. Katz, V. Mantovani Sarti, J. Noronha-Hostler, P. Parotto, A. Pasztor, et al., Phys. Rev. D 96, 034517 (2017); arXiv:1702.01113 [hep-lat].

  15. V. G. Bornyakov, D. L. Boyda, V. A. Goy, H. Iida, A. V. Molochkov, A. Nakamura, A. A. Nikolaev, V. I. Zakharov, and M. Wakayama, EPJ Web Conf. 182, 02017 (2018); arXiv:1712.02830 [hep-lat].

  16. C. Bonati, M. D’Elia, F. Negro, F. Sanfilippo, and K. Zambello, Phys. Rev. D 98, 054510 (2018); arXiv: 1805.02960 [hep-lat].

  17. S. Borsanyi, Z. Fodor, J. N. Guenther, S. K. Katz, K. K. Szabo, A. Pasztor, I. Portillo, and C. Ratti, JHEP, No. 10, 205 (2018); arXiv:1805.04445 [hep-lat].

  18. P. Weisz, Nucl. Phys. B 212, 1–17 (1983).

    Article  ADS  Google Scholar 

  19. S. Hands, J. B. Kogut, M. P. Lombardo, and S. E. Morrison, Nucl. Phys. B 558, 327–346 (1999); arXiv:hep-lat/9902034 [hep-lat].

    Article  ADS  Google Scholar 

  20. V. G. Bornyakov, V. V. Braguta, E. M. Ilgenfritz, A. Y. Kotov, A. V. Molochkov, and A. A. Nikolaev, JHEP, No. 03, 161 (2018); arXiv:1711.01869 [hep-lat].

  21. A. Roberge and N. Weiss, Nucl. Phys. B 275, 734–745 (1986).

    Article  ADS  Google Scholar 

  22. A. Hasenfratz and D. Toussaint, Nucl. Phys. B 371, 539–549 (1992).

    Article  ADS  Google Scholar 

  23. V. Vovchenko, J. Steinheimer, O. Philipsen, and H. Stoecker, “Cluster expansion model for QCD baryon number fluctuations: No phase transition at \({{\mu }_{B}}{\text{/}}T < \pi \),” Phys. Rev. D 97, 114 030 (2018); arXiv: 1711.01261.

  24. V. G. Bornyakov, D. L. Boyda, V. A. Goy, A. V. Molochkov, A. Nakamura, A. A. Nikolaev, and V. I. Zakharov, “New approach to canonical partition functions computation in \({{N}_{f}} = 2\) lattice QCD at finite baryon density,” Phys. Rev. D 95, 094 506 (2017); arXiv:1611.04229.

  25. G. A. Almási, B. Friman, K. Morita, and K. Redlich, Phys. Lett. B 793, 19–25 (2019); arXiv:1902.05457 [hep-ph].

Download references

ACKNOWLEDGMENTS

The authors are grateful to V. Braguta and A. Nikolaev for useful discussions. Computer simulations were performed on the FEFU GPU cluster Vostok-1, the Central Linux Cluster of the NRC “Kurchatov Institute”—IHEP, the Linux Cluster of the NRC “Kurchatov Institute”—ITEP (Moscow). In addition, we used computer resources of the federal collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at NRC Kurchatov Institute, http://ckp.nrcki.ru/.

Funding

This work was completed due to support of the Russian Foundation for Basic Research via grant 18-02-40130 mega.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Begun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begun, A., Bornyakov, V.G., Gerasimeniuk, N.V. et al. Analytic Continuation in Lattice QC2D. Phys. Part. Nuclei 52, 529–535 (2021). https://doi.org/10.1134/S1063779621040134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779621040134

Navigation