Skip to main content
Log in

A Note on Efimov Nonlocal and Nonpolynomial Quantum Scalar Field Theory

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

In frames of the nonlocal and nonpolynomial quantum theory of the one component scalar field in \(D\)-dimensional spacetime, stated by G.V. Efimov, the expansion of the \(\mathcal{S}\)-matrix is revisited for different interaction Lagrangians and for some kinds of Gaussian propagators modified by different ultraviolet form factors \(F\) which depend on some length parameter \(l\). The expansion of the \(\mathcal{S}\)-matrix is of the form of a grand canonical partition function of some \((D + N)\)-dimensional (\(N \geqslant 1\)) classical gas with interaction. The toy model of the realistic quantum field theory (QFT) is considered where the \(\mathcal{S}\)-matrix is calculated in closed form. Then, the functional Schwinger–Dyson and Schrödinger equations for the \(\mathcal{S}\)-matrix in Efimov representation are derived. These equations play a central role in the present paper. The functional Schwinger–Dyson and Schrödinger equations in Efimov representation do not involve explicit functional derivatives but involve a shift of the field which is the \(\mathcal{S}\)-matrix argument. The asymptotic solutions of the Schwinger–Dyson equation are obtained in different limits. Also, the solution is found in one heuristic case allowing us to study qualitatively the behavior of the \(\mathcal{S}\)-matrix for an arbitrary finite value of its argument. Self-consistency equations, which arise during the process of derivation, are of a great interest. Finally, in the light of the discussion of QFT functional equations, ultraviolet form factors and extra dimensions, the connection with functional (in terms of the Wilson–Polchinski and Wetterich–Morris functional equations) and holographic renormalization groups (in terms of the functional Hamilton–Jacobi equation) is made. In addition the Hamilton–Jacobi equation is formulated in an unconventional way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. V. Efimov, “Essentially nonlinear interaction Lagrangians and nonlocalized quantum field theory,” Theor. Math. Phys. 2, 26–40 (1970).

    Article  Google Scholar 

  2. G. V. Efimov, “Nonlocal quantum field theory, nonlinear interaction Lagrangians, and convergence of the perturbation theory series,” Theor. Math. Phys. 2, 217–223 (1970).

    Article  Google Scholar 

  3. G. V. Efimov, “On the proof that the scattering matrix is unitary,” Theor. Math. Phys. 25, 951–957 (1975).

    Article  Google Scholar 

  4. D. Ya. Petrina and V. I. Skripnik, “Kirkwood–Salzburg equations for the coefficient functions of the S matrix,” Theor. Math. Phys. 8, 896–904 (1971).

    Article  Google Scholar 

  5. A. L. Rebenko, “On equations for the matrix elements of Euclidean quantum electrodynamics,” Theor. Math. Phys. 11, 525–536 (1972).

    Article  MathSciNet  Google Scholar 

  6. A. G. Basuev, “Convergence of the perturbation series for a nonlocal nonpolynomial theory,” Theor. Math. Phys. 16, 835–842 (1973).

    Article  MathSciNet  Google Scholar 

  7. A. G. Basuev, “Convergence of the perturbation series for the Yukawa interaction,” Theor. Math. Phys. 22, 142–148 (1975).

    Article  MathSciNet  Google Scholar 

  8. G. V. Efimov, Nonlocal Interactions of Quantized Fields (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  9. G. V. Efimov, Problems of the Quantum Theory of Nonlocal Interactions (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  10. G. V. Efimov, “Blokhintsev and nonlocal quantum field theory,” Phys. Part. Nucl. 35, 598–618 (2004).

    Google Scholar 

  11. B. P. Kosyakov, Introduction to the Classical Theory of Particles and Fields (Berlin–Heidelberg, Springer, 2007).

    MATH  Google Scholar 

  12. G. V. Efimov, “Nonlocal quantum theory of the scalar field,” Commun. Math. Phys. 5, 42–56 (1967).

    Article  ADS  MATH  Google Scholar 

  13. G. V. Efimov and V. A. Alebastrov, “A proof of the unitarity of scattering matrix in a nonlocal quantum field theory,” Commun. Math. Phys. 31, 1–24 (1973).

    Article  ADS  MATH  Google Scholar 

  14. G. V. Efimov and V. A. Alebastrov, “Causality in quantum field theory with nonlocal interaction,” Commun. Math. Phys. 38, 11–28 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  15. G. V. Efimov, “Strong coupling in the quantum field theory with nonlocal nonpolynomial interaction,” Commun. Math. Phys. 57, 235–258 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  16. G. V. Efimov, “Vacuum energy in gφ4 theory for g,” Commun. Math. Phys. 65, 15–44 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  17. G. V. Efimov, “Amplitudes in nonlocal theories at high energies,” Theor. Math. Phys. 128, 1169–1175 (2001).

    Article  MATH  Google Scholar 

  18. P. Kopietz, L. Bartosch, and F. Schütz, Introduction to the Functional Renormalization Group (Berlin–Heidelberg, Springer, 2010).

    Book  MATH  Google Scholar 

  19. A. Wipf, Statistical Approach to Quantum Field Theory (Berlin–Heidelberg, Springer, 2013).

    Book  MATH  Google Scholar 

  20. O. J. Rosten, “Fundamentals of the exact renormalization group,” Phys. Rep. 511, 177–272 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  21. Y. Igarashi, K. Itoh, and H. Sonoda, “Realization of symmetry in the ERG approach to quantum field theory,” Prog. Theor. Phys. Suppl. 181, 1–166 (2009).

    Article  ADS  MATH  Google Scholar 

  22. N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (John Wiley and Sons Inc., 1980).

    Google Scholar 

  23. N. N. Bogoliubov and D. V. Shirkov, Quantum Fields (Benjiamin/Cummings Publ. Co., 1983).

    MATH  Google Scholar 

  24. A. N. Vasiliev, Functional Methods in Quantum Field Theory and Statistical Physics (Gordon and Breach Sci. Publ., 1998).

    MATH  Google Scholar 

  25. A. N. Vasiliev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics (Chapman and Hall/CRC, Boca Raton, FL, 2004).

    Book  Google Scholar 

  26. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon, Oxford, UK, 1989).

    MATH  Google Scholar 

  27. A. M. Polyakov, Gauge Fields and Strings (Harwood Acad. Publ. GmbH, Chur, Switzerland, 1987).

    MATH  Google Scholar 

  28. A. M. Polyakov, “Quark confinement and topology of gauge theories,” Nucl. Phys. B 120, 429–458 (1977).

    Article  ADS  Google Scholar 

  29. Stu Samuel, “Grand partition function in field theory with applications to sine-Gordon field theory,” Phys. Rev. D 18, 1916 (1978).

    Article  ADS  Google Scholar 

  30. L. O’Raifeartaigh, J. M. Pawlowski, and V. V. Sreedhar, “Duality in quantum Liouville theory,” Ann. Phys. 277, 117–143 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. P. Dutta, “Schwinger–Dyson approach to Liouville field theory,” Theor. Math. Phys. 187, 899–908 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  32. J. M. Maldacena, “The large-N limit of superconformal field theories and supergravity,” Int. J. Theor. Phys. 38, 1113–1133 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  33. E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253–291 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett. B 428, 105–114 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. E. T. Akhmedov, “A remark on the AdS/CFT correspondence and the renormalization group flow,” Phys. Lett. B 442 (1–4), 152–158 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. J. de Boer, E. Verlinde, and H. Verlinde, “On the holographic renormalization group,” J. High Energy Phys., No. 08, 003 (2000).

  37. E. Verlinde and H. Verlinde, “RG-flow, gravity and the cosmological constant,” J. High Energy Phys., No. 05, 034 (2000).

  38. M. Fukuma, S. Matsuura, and T. Sakai, “Holographic renormalization group,” Prog. Theor. Phys. 4, 489–562 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. J. M. Lizana, T. R. Morris, and M. Pérez-Victoria, “Holographic renormalisation group flows and renormalisation from a Wilsonian perspective,” J. High Energy Phys., No. 03, 198 (2016).

  40. E. T. Akhmedov, “Notes on multi-trace operators and holographic renormalization group” (2002), arXiv: hep-th/0202055.

  41. E. T. Akhmedov, I. B. Gahramanov, and E. T. Musaev, “Hints on integrability in the Wilsonian/holographic renormalization group,” JETP Lett. 93, 545–550 (2011).

    Article  ADS  Google Scholar 

  42. I. Heemskerk and J. Polchinski, “Holographic and Wilsonian renormalization groups,” J. High Energy Phys., No. 06, 031 (2011).

  43. Luisa Doplicher, “Generalized Tomonaga–Schwinger equation from the Hadamard formula,” Phys. Rev. D 70, 064037 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  44. A. G. Basuev and A. N. Vasil’ev, “Method of summing the perturbation series in scalar theories,” Theor. Math. Phys. 18, 129–135 (1974).

    Article  MathSciNet  Google Scholar 

  45. V. V. Belokurov, Yu. P. Solov’ev, and E. T. Shavgulidze, “Perturbation theory with convergent series: I. Toy models,” Theor. Math. Phys. 109, 1287–1293 (1996).

    Article  MATH  Google Scholar 

  46. V. V. Belokurov, Yu. P. Solov’ev, and E. T. Shavgulidze, “Perturbation theory with convergent series: II. Functional integrals in Hilbert space,” Theor. Math. Phys. 109, 1294–1301 (1996).

    Article  MATH  Google Scholar 

  47. L. D. Korsun, A. N. Sisakyan, and I. L. Solovtsov, “Variational perturbation theory. The φ2k oscillator,” Theor. Math. Phys. 90, 22–34 (1992).

    Article  MathSciNet  Google Scholar 

  48. E. S. Fradkin, “Application of functional methods in quantum field theory and quantum statistics: (I). Divergence-free field theory with local nonlinear interaction,” Nucl. Phys. 49, 624–640 (1963).

    Article  Google Scholar 

  49. E. S. Fradkin, “Application of functional methods in quantum field theory and quantum statistics: (II),” Nucl. Phys. 76, 588–624 (1966).

    Article  MathSciNet  Google Scholar 

  50. E. S. Fradkin, Selected Papers on Theoretical Physics (Papers in English and Russian) (Nauka, Moscow, 2007).

    Google Scholar 

  51. G. V. Efimov, “Construction of a local quantum field theory without ultraviolet divergences,” J. Exp. Theor. Phys. 17, 1417–1423 (1963).

    MathSciNet  MATH  Google Scholar 

  52. G. V. Efimov, “Nonlinear interaction Lagrangians,” J. Exp. Theor. Phys. 21, 395–401 (1965).

    ADS  MathSciNet  Google Scholar 

  53. M. K. Volkov, “Quantum field model with unrenormalizable interaction,” Commun. Math. Phys. 7, 289–304 (1968).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. M. K. Volkov, “Green functions in the theory of local unrenormalizable interactions,” Commun. Math. Phys. 15, 69–82 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  55. B. W. Lee and B. Zumino, “Some considerations on the Efimov–Fradkin method in nonlinear field theories,” Nucl. Phys. B 13, 671–686 (1969).

    Article  ADS  Google Scholar 

  56. R. Delbourgo, A. Salam, and J. Strathdee, “Infinities of nonlinear and Lagrangian theories,” Phys. Rev. 187, 1999 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  57. A. Salam and J. Strathdee, “Momentum-space behavior of integrals in nonpolynomial Lagrangian theories,” Phys. Rev. D 1, 3296 (1970).

    Article  ADS  Google Scholar 

  58. D. I. Fivel and P. K. Mitter, “Theory of weak interactions without divergences,” Phys. Rev. D 1, 3270 (1970).

    Article  ADS  Google Scholar 

  59. S. Graffi and V. Grecchi, “Asymptotic expansions and nonlinear field theories,” Phys. Rev. D 6, 493 (1972).

    Article  ADS  Google Scholar 

  60. Z. Horvath and G. Pocsik, “High-energy summation of ladder diagrams in nonpolynomial field theories,” Ann. Phys. 74, 555–566 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  61. M. La Camera and A. Wataghin, “Nonpolynomial interactions at high energies,” Nuovo Cimento A, 17, 526–534 (1973).

    Article  ADS  Google Scholar 

  62. S. N. Biswas, G. P. Malik, and E. C. G. Sudarshan, “Superpropagator for a nonpolynomial field,” Phys. Rev. D 7, 2884 (1973).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are deeply grateful to their families for love, wisdom and understanding. We are very grateful to Artem A. Alexandrov for his help in typing the paper. Also, we express special gratitude to Sergey E. Kuratov and Alexander V. Andriyash for supporting this research at an early stage at the Center for Fundamental and Applied Research (Dukhov Research Institute of Automatics). Finally, we are very grateful to Reviewer for many valuable comments and advice on this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. G. Ivanov or S. L. Ogarkov.

Additional information

In Memory of Gariy Vladimirovich Efimov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guskov, V.A., Ivanov, M.G. & Ogarkov, S.L. A Note on Efimov Nonlocal and Nonpolynomial Quantum Scalar Field Theory. Phys. Part. Nuclei 52, 420–437 (2021). https://doi.org/10.1134/S1063779621030059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779621030059

Keywords:

Navigation