Skip to main content
Log in

Two-Jet Correlations in Multijet Events in the Regge Limit of QCD

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

A new method for matching calculations in the leading approximation in the kT-factorization approach with the higher-order contributions of perturbation theory, which appear due to the emission of additional hard partons, is proposed. In the proposed method, azimuthal correlations between the leading and subleading jets in a multijet event are considered. The calculations are carried out within the parton Reggeization approach (PRA) that is based on kT-factorization of hard processes in multi-Regge kinematics, the Kimber–Martin–Ryskin model for nonintegrated parton distribution functions (nPDF), and the effective field theory of Reggeized gluons and quarks proposed by L.N. Lipatov. Theoretical predictions are compared with the CMS collaboration data collected at the Large Hadron Collider at energy \(\sqrt S = 13\) TeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. V. Khachatryan et al. (CMS Collab.), “Dijet azimuthal decorrelations in \(pp\) collisions at \(\sqrt S = 7\) TeV,” Phys. Rev. Lett. 106, 122003 (2011).

    Article  ADS  Google Scholar 

  2. A. M. Sirunyan, A. Tumasyan, W. Adam, et al., “Azimuthal correlations for inclusive 2-jet, 3-jet, and 4-jet events in pp collisions at \(\sqrt S = 13\) TeV,” Eur. Phys. J. C 78, 566 (2018).

    Article  ADS  Google Scholar 

  3. G. Aad et al. (ATLAS Collab.), “Measurement of dijet azimuthal decorrelations in \(pp\) collisions at \(\sqrt S = 7\) TeV,” Phys. Rev. Lett. 106, 172002 (2011).

    Article  ADS  Google Scholar 

  4. Z. Nagy and D. E. Soper, “What is a parton shower?” Phys. Rev. D 98, 014034 (2018).

    Article  ADS  Google Scholar 

  5. S. Frixione and B. R. Webber, “Matching NLO QCD computations and parton shower simulations,” JHEP, 0206, 029 (2002).

  6. S. Catani, F. Krauss, R. Kuhn, and B. R. Webber, “QCD matrix elements + parton showers,” JHEP, 111, 063 (2001)

  7. S. Mrenna and P. Richardson, “Matching matrix elements and parton showers with HERWIG and PYTHIA,” JHEP, 05, 040 (2004).

  8. S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method,” JHEP, 11, 070 (2007).

  9. R. Frederix and S. Frixione, “Merging meets matching in MC@NLO,” JHEP, 12, 061 (2012).

  10. J. C. Collins and R. K. Ellis, “Heavy quark production in very high-energy hadron collisions,” Nucl. Phys. B360, 3 (1991).

    Article  ADS  Google Scholar 

  11. S. Catani, M. Ciafaloni, F. Hautmann, “High-energy factorization and small x heavy flavor production,” Nucl. Phys. B366, 135–188 (1991).

    Article  ADS  Google Scholar 

  12. L. V. Gribov, E. M. Levin, and M. G. Ryskin, “Semihard processes in QCD,” Phys. Rept. 100, 1 (1983).

    Article  ADS  Google Scholar 

  13. E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, “Multi-reggeon processes in the Yang–Mills theory,” Sov. Phys. JETP, 44, 443 (1976);

    ADS  Google Scholar 

  14. E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, “The Pomeranchuk singularity in non-Abelian gauge theories,” Sov. Phys. JETP, 45, 199 (1977);

    ADS  Google Scholar 

  15. Y. Y. Balitsky and L. N. Lipatov, “The Pomeranchuk singularity in Quantum Chromodynamics,” Sov. J. Nucl. Phys. 28, 822 (1978).

    Google Scholar 

  16. V. S. Fadin and L. N. Lipatov, “Radiative corrections to QCD scattering amplitudes in a multi-Regge kinematics,” Nucl. Phys. B406, 259 (1993).

    Article  ADS  Google Scholar 

  17. V. S. Fadin, M. G. Kozlov, and A. V. Reznichenko, “Gluon Reggeization in Yang-Mills theories,” Phys. Rev. D 8, 085044 (2015) https://doi.org/10.1103/PhysRevD.92.085044 [arXiv: 1507.00823 [hep-th]]; V. S. Fadin, R. Fiore, M. G. Kozlov, and A. V. Reznichenko, “Proof of the multi-Regge form of QCD amplitudes with gluon exchanges in the NLA,” Phys. Lett. B 639, 74 (2006); https://doi.org/10.1016/j.physletb.2006.03.031 [hep-ph/0602006].

  18. A. V. Karpishkov, M. A. Nefedov, and V. A. Saleev, “\(B\bar {B}\) angular correlations at the LHC in parton Reggeization approach merged with higher-order matrix elements,” Phys. Rev. D96, 096019 (2017).

    Article  ADS  Google Scholar 

  19. M. A. Nefedov, V. A. Saleev, and A.V. Shipilova, “Dijet azimuthal decorrelations at the LHC in the parton Reggeization approach,” Phys. Rev. D87, 094030 (2013).

    Article  ADS  Google Scholar 

  20. M. Bury, A. van Hameren, H. Jung, K. Kutak, S. Sapeta, and M. Serino, “Calculations with off-shell matrix elements, TMD parton densities and TMD parton showers,” Eur. Phys. J. C78, 137 (2018);

    Article  ADS  Google Scholar 

  21. A. B. Martinez, P. Connor, F. Hautmann, et al., “Determination and application of TMD parton densities using the Parton Branching method,” Proc. of Seminar DIS2018, 013 (2018).

  22. A. van Hameren, “KaTie: For parton-level event generation with kT-dependent initial states,” Comput. Phys. Commun. 224, 371 (2018).

    Article  ADS  Google Scholar 

  23. H. Jung, S. Baranov, M. Deak, A. Grebenyuk, et al., “The CCFM Monte Carlo generator CASCADE version 2.2.03,” Eur. Phys. J. C70, 1237 (2010).

    Article  ADS  Google Scholar 

  24. M. A. Kimber, A. D. Martin, and M. G. Ryskin, “Unintegrated parton distributions and prompt photon hadroproduction,” Eur. Phys. J. C12, 655 (2000).

    Article  ADS  Google Scholar 

  25. L. N. Lipatov, “Gauge invariant effective action for high energy processes in QCD,” Nucl. Phys. B452, 369 (1995).

    Article  ADS  Google Scholar 

  26. L. N. Lipatov and M. I. Vyazovsky, “Quasi-multi-Regge processes with a quark exchange in the t-channel,” Nucl. Phys. B597, 399 (2001).

    Article  ADS  Google Scholar 

  27. V. A. Saleev and A. V. Shipilova, “Inclusive b-jet and bb-dijet production at the LHC via Reggeized gluons,” Phys. Rev. D86, 034032 (2012).

    Article  ADS  Google Scholar 

  28. R. Maciula, V. A. Saleev, A. V. Shipilova, and A. Szczurek, “New mechanisms for double charmed meson production at the LHCb,” Phys. Lett. B758, 458 (2016).

    Article  ADS  Google Scholar 

  29. A. V. Karpishkov, M. A. Nefedov, V. A. Saleev, and A. V. Shipilova, “B-meson production in the parton Reggeization approach at Tevatron and the LHC,” Int. J. Mod. Phys. A30, 1550023 (2015).

    Article  ADS  Google Scholar 

  30. K. Kutak, R. Maciula, M. Serino, A. Szczurek, and A. van Hameren, “Four-jet production in single- and double-parton scattering within high-energy factorization,” JHEP, 1604, 175 (2016).

    ADS  Google Scholar 

  31. M. Bury and A. van Hameren, “Numerical evaluation of multi-gluon amplitudes for high energy factorization,” Comput. Phys. Commun. 196, 592 (2015).

    Article  ADS  Google Scholar 

  32. M. Cacciari, G. P. Salam, and G. Soyez, “The anti-\({{k}_{t}}\) jet clustering algorithm,” JHEP, 04, 063 (2008).

Download references

ACKNOWLEDGMENTS

The authors are grateful to the II Institute for Theoretical Physics, Hamburg University, and personally to Prof. B.A. Kniehl for the computing time provided by him at the Computing Cluster of the Particle Phenomenology Group.

Funding

The paper was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS,” project no. N-18-1-1-30-1, and by the Ministry of education and science of Russia by State assignment to educational and research institutions under project FSSS-2020-0014.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Nefedov or V. A. Saleev.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nefedov, M.A., Saleev, V.A. Two-Jet Correlations in Multijet Events in the Regge Limit of QCD. Phys. Part. Nuclei 51, 714–719 (2020). https://doi.org/10.1134/S1063779620040528

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779620040528

Navigation