Skip to main content
Log in

Recent Results with HYDJET\({{++}}\) Model for Heavy-Ion Collisions

  • ELEMENTARY PARTICLES AND FIELDS/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The HYDJET\({++}\) event generator is a phenomenological model of heavy-ion collisions that treats the collision process as a combination of a soft hydro-type state and a hard state resulting from hard parton scattering. On the one hand, it allows one to quickly simulate relativistic heavy-ion collisions, and on the other hand, it reproduces and describes a number of experimental phenomena in the soft and hard sector. It also allows you to study many features of the interaction as interplay of soft and hard processes. Here we present some selected results of recent studies. Basically, new results on the correlation of elliptical flows at small and large transverse momenta at LHC energies are described. Current studies of the charge balance function at LHC energies and the A-dependence of the flow in heavy-ion collisions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. I. P. Lokhtin, L. V. Malinina, S. V. Petrushanko, A. M. Snigirev, I. Arsene, and K. Tywoniuk, Comput. Phys. Commun. 180, 779 (2009).

    Article  ADS  CAS  Google Scholar 

  2. N. S. Amelin, R. Lednicky, T. A. Pocheptsov, I. P. Lokhtin, L. V. Malinina, A. M. Snigirev, Iu. A. Karpenko, and Yu. M. Sinyukov, Phys. Rev. C 74, 064901 (2006).

  3. N. S. Amelin, R. Lednicky, I. P. Lokhtin, L. V. Malinina, A. M. Snigirev, Iu. A. Karpenko, Yu. M. Sinyukov, I. Arsene, and L. Bravina, Phys. Rev. C 77, 014903 (2008).

  4. T. Sjostrand, S. Mrenna, and P. Skands, J. High Energy Phys. 0605, 026 (2006).

  5. I. P. Lokhtin and A. M. Snigirev, Eur. Phys. J. C 45, 211 (2006).

    Article  ADS  CAS  Google Scholar 

  6. I. P. Lokhtin, A. V. Belyaev, L. V. Malinina, S. V. Petrushanko, E. P. Rogochaya, and A. M. Snigirev, Eur. Phys. J. C 72, 2045 (2012).

    Article  ADS  Google Scholar 

  7. L. V. Bravina, B. H. Brusheim Johansson, G. Kh. Eyyubova, V. L. Korotkikh, I. P. Lokhtin, L. V. Malinina, S. V. Petrushanko, A. M. Snigirev, and E. E. Zabrodin, Eur. Phys. J. C 74, 2807 (2014).

    Article  ADS  Google Scholar 

  8. L. V. Bravina, E. S. Fotina, V. L. Korotkikh, I. P. Lokhtin, L. V. Malinina, E. N. Nazarova, S. V. Petrushanko, A. M. Snigirev, and E. E. Zabrodin, Eur. Phys. J. C 75, 588 (2015).

    Article  ADS  Google Scholar 

  9. I. P. Lokhtin, A. V. Belyaev, and A. M. Snigirev, Eur. Phys. J. C 71, 1650 (2011).

    Article  ADS  Google Scholar 

  10. I. P. Lokhtin, A. A. Alkin, and A. M. Snigirev, Eur. Phys. J. C 75, 452 (2015).

    Article  ADS  Google Scholar 

  11. G. Eyyubova, V. L. Korotkikh, I. P. Lokhtin, S. V. Petrushanko, A. M. Snigirev, L. V. Bravina, and E. E. Zabrodin, Phys. Rev. C 91, 064907 (2015).

  12. A. V. Belyaev, L. V. Bravina, A. S. Chernyshov, G. Kh. Eyyubova, V. L. Korotkikh, I. P. Lokhtin, L. V. Malinina, S. V. Petrushanko, A. M. Snigirev, and E. E. Zabrodin, J. Phys.: Conf. Ser. 1690, 012117 (2020).

  13. L. V. Bravina, G. Kh. Eyyubova, V. L. Korotkikh, I. P. Lokhtin, S. V. Petrushanko, A. M. Snigirev, and E. E. Zabrodin, Phys. Rev. C 103, 034905 (2021).

  14. A. Chernyshov, G. Eyyubova, V. L. Korotkikh, I. P. Lokhtin, L. Malinina, S. V. Petrushanko, A. M. Snigirev, and E. E. Zabrodin, Chin. Phys. C 47, 084107 (2023).

  15. S. Voloshin and Y. Zhang, Z. Phys. C 70, 665 (1996).

    Article  CAS  Google Scholar 

  16. A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998).

    Article  ADS  CAS  Google Scholar 

  17. J. Y. Ollitrault, Phys. Rev. D 46, 229 (1992).

    Article  ADS  CAS  Google Scholar 

  18. M. Gyulassy, I. Vitev, and X.-N. Wang, Phys. Rev. Lett. 86, 2537 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. A. M. Sirunyan et al. (CMS Collab.), Phys. Lett. B 776, 195 (2018).

    Article  ADS  CAS  Google Scholar 

  20. M. Aaboud et al. (ATLAS Collab.), Eur. Phys. J. C 78, 997 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. A. Bilandzic, R. Snellings, and S. Voloshin, Phys. Rev. C 83, 044913 (2011).

  22. S. A. Bass, P. Danielewicz, and S. Pratt, Phys. Rev. Lett. 85, 2689 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. P. Bozek, Phys. Lett. B 609, 247 (2005).

    Article  ADS  CAS  Google Scholar 

  24. B. Abelev et al. (ALICE Collab.), Phys. Lett. B 723, 267 (2013).

    Article  ADS  Google Scholar 

  25. M. Gyulassy and X. N. Wang, Comput. Phys. Commun. 83, 307 (1994).

    Article  ADS  CAS  Google Scholar 

  26. M. Gyulassy and X. N. Wang, Phys. Rev. D 44, 3501 (1991).

    Article  ADS  Google Scholar 

  27. B. Zhang, C. M. Ko, Bao-An Li, and Z. Lin, Phys. Rev. C 61, 067901 (2000).

  28. Z. W. Lin, S. Pal, C. M. Ko, Bao-An Li, and B. Zhang, Phys. Rev. C 64, 011902 (2001).

  29. A. M. Sirunyan et al. (CMS Collab.), Phys. Rev. C 100, 044902 (2019).

Download references

ACKNOWLEDGMENTS

The speaker would like to thank the Organizers of ICPPA 2022 for the possibility to present the talk. The authors thank our colleagues, discussions with A.I. Demiyanov are gratefully acknowledged.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kh. Eyyubova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, A.V., Bravina, L.V., Chernyshov, A. et al. Recent Results with HYDJET\({{++}}\) Model for Heavy-Ion Collisions. Phys. Atom. Nuclei 86, 1487–1492 (2023). https://doi.org/10.1134/S1063778824010113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778824010113

Navigation