Skip to main content
Log in

Measurements of ITER Fusion Power by Neutron Flux Monitors

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The results of the analysis of the uncertainty in measurements of fusion power of the DD and DT plasma scenarios of the ITER tokamak reactor by means of neutron flux monitors are presented. The measurement by three ITER neutron flux monitor systems–Divertor Neutron Flux Monitor (DNFM), Neutron Flux Monitor (NFM), and Micro-Fission Chamber (MFC)–has been simulated. The diagnostic systems considered are designed to measure the total neutron flux and fusion power of ITER plasma. The sources and magnitude of uncertainty in measurements of fusion power and the total neutron flux for various ITER plasma scenarios are examined. The magnitude of the required error in the calibration of the diagnostic detectors is estimated. On the basis of the results of the neutronic analysis and the requirements for the diagnostics set by the International Organization ITER, the expected performance characteristics of diagnostic systems are confirmed. A method to compensate the systematic measurement error of the DNFM due to the vertical displacement of the plasma is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. A. O. Kovalev et al., J. Fusion Energ. 39, 40 (2020). https://doi.org/10.1007/s10894-020-00232-x

    Article  CAS  Google Scholar 

  2. A. R. Polevoi et al., in Proceedings of the 45th EPS Conference on Plasma Physics, Prague, Check Republic, July 2–6, 2018. http://ocs.ciemat.es/EPS2018PAP/pdf/P4.1009.pdf.

    Google Scholar 

  3. A. O. Kovalev et al., Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez 42 (3), 64 (2019).

    Google Scholar 

  4. A. O. Kovalev et al., Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez 43 (1), 18 (2021).

    Google Scholar 

  5. Yu. A. Kaschuck et al., AIP Conf. Proc. 988, 303 (2008).

    Article  ADS  CAS  Google Scholar 

  6. J. Yang et al., Plasma Sci. Technol. 10, 141 (2008).

    Article  ADS  CAS  Google Scholar 

  7. T. Nishitani et al., in Diagnostics for Experimental Thermonuclear Fusion Reactors 2, Ed. by P. E. Stott, G. Gorini, P. Prandoni, and E. Sindoni (Springer, Boston, MA, 1998). https://doi.org/10.1007/978-1-4615-5353-3_60

    Book  Google Scholar 

  8. A. R. Polevoi et al., in Proceedings of the 42th EPS Conference on Plasma Physics, Lisbon, Portugal, June 22–26, 2015. http://ocs.ciemat.es/EPS2015PAP/pdf/P4.126.pdf.

  9. R. R. Khayrutdinov et al., in Proceedings of the 30th EPS Conference on Contr. Fusion and Plasma Physics, St. Petersburg, July 7–11, 2003 (ECA, 2003) vol. 27A, P-3.163.

  10. F. Imbeaux et al., Nucl. Fusion 55, 123006 (2015).

  11. A. V. Krasilnikov et al., Nucl. Fusion 45, 1503 (2005). https://doi.org/10.1088/0029-5515/45/12/005

    Article  ADS  CAS  Google Scholar 

  12. T. Hayashi et al., Rev. Sci. Instrum. 79, 10E506 (2008). https://doi.org/10.1063/1.2968709

  13. E. S. Martazov et al., EPJ Web Conf. 253, 03003 (2021). https://doi.org/10.1051/epjconf/202125303003

  14. A. A. Borisov, N. A. Deryabina, and D. V. Markovskii, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez 38 (3), 31 (2015).

    Google Scholar 

  15. S. V. Syromukov et al., At. Energy 110, 68 (2015).

    Article  Google Scholar 

  16. J. A. Snipes et al., Nucl. Fusion 61, 106036 (2021).

  17. L. Bertalot et al., in Proceedings of the 1st EPs Conference on Plasma Diagnostics 1st ECPD, Villa Mondragone, Frascati, Rome, Italy, April 14–17, 2015.

  18. L. Bertalot et al., in Proceedings of the 27th Symposium on Fusion Technology (SOFT 2012), Liege, Belgium. https://doi.org/10.22323/1.240.0090

Download references

ACKNOWLEDGMENTS

We are grateful to the staff of the ITER International Organization (Saint-Paul-les-Durance, France) and, in particular, A.R. Polevoy for providing ITER plasma scenario data, assistance in performing calculations, and detailed discussions of the results.

Funding

The study was supported by the state contract between the Institution Project Center ITER and the Rosatom State Atomic Energy Corporation no. N.4a.241.19.22.1123 dated February 14, 2022, “Development, Pilot Production, Testing, and Preparation for Delivery of Special Equipment to Ensure the Fulfillment of Russia’s Obligations under the ITER project in 2022.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. O. Kovalev, R. N. Rodionov, V. A. Vorobiev, D. V. Portnov, T. M. Kormilitsyn, Yu. G. Vysokih, S. Yu. Obudovsky or Yu. A. Kashchuk.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Shmatikov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, A.O., Rodionov, R.N., Vorobiev, V.A. et al. Measurements of ITER Fusion Power by Neutron Flux Monitors. Phys. Atom. Nuclei 86 (Suppl 2), S187–S197 (2023). https://doi.org/10.1134/S1063778823140077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823140077

Keywords:

Navigation