Skip to main content
Log in

Mechanisms of Cosmic Ray Generation

  • Elementary Particles and Fields/Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The origin of cosmic rays (CR) stays an open-ended question for over a hundred years. However, during the past decade, a wide range of new experimental data and theoretical models was brought into the light. In this work we briefly review basic mechanisms of generation of high energy cosmic rays, including exotic ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. That is the type of models where particles are born with already high energy, as opposed to ‘‘bottom-up’’ models, in which particles obtain energy due to some acceleration mechanism.

REFERENCES

  1. M. V. Medvedev, Phys. Rev. E 67, 045401 (2003).

    Article  ADS  Google Scholar 

  2. A. M. Bykov, D. C. Ellison, A. Marcowith, and S. M. Osipov, Space Sci. Rev. 214, 41 (2018).

    Article  ADS  Google Scholar 

  3. M. Di Mauro, arXiv:1601.04323 (2016).

  4. Y. I. Salamin, M. Wen, and C. H. Keitel, ApJ 907, 24 (2021).

    Article  ADS  Google Scholar 

  5. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio, E. A. Bogomolov, L. Bonechi, M. Bongi, V. Bonvicini, S. Bottai, A. Bruno, F. Cafagna, D. Campana, P. Carlson, M. Casolino, G. Castellini, et al., Nature 458, 607 (2009).

    Article  ADS  Google Scholar 

  6. L. Accardo, M. Aguilar, D. Aisa, B. Alpat, A. Alvino, G. Ambrosi, K. Andeen, L. Arruda, N. Attig, P. Azzarello, A. Bachlechner, F. Barao, A. Barrau, L. Barrin, A. Bartoloni, L. Basara, et al., Phys. Rev. Lett. 113, 121101 (2014).

    Article  ADS  Google Scholar 

  7. A. A. Abdo, M. Ackermann, M. Ajello, W. B. Atwood, M. Axelsson, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, M. Battelino, B. M. Baughman, K. Bechtol, R. Bellazzini, B. Berenji, R. D. Blandford, E. D. Bloom, et al., Phys. Rev. Lett. 102, 181101 (2009).

    Article  ADS  Google Scholar 

  8. A. Philippov, A. Timokhin, and A. Spitkovsky, Phys. Rev. Lett. 124, 245101 (2020).

    Article  ADS  Google Scholar 

  9. A. U. Abeysekara, A. Albert, R. Alfaro, C. Alvarez, J. D. Álvarez, R. Arceo, J. C. Arteaga-Velázquez, D. Avila Rojas, H. A. Ayala Solares, A. S. Barber, N. Bautista-Elivar, A. Becerril, E. Belmont-Moreno, S. Y. BenZvi, D. Berley, A. Bernal, et al., Science 358, 911 (2017).

    Article  ADS  Google Scholar 

  10. S.-Q. Xi, R.-Y. Liu, Z.-Q. Huang, K. Fang, and X.-Y. Wang, ApJ 878, 104 (2019).

    Article  ADS  Google Scholar 

  11. M. Linares and M. Kachelriess, JCAP 2102, 030 (2021).

  12. L. Orusa, S. Manconi, F. Donato, and M. Di Mauro, arXiv:2107.06300 (2021).

  13. T. Ghosh, J. Kumar, D. Marfatia, and P. Sandick, JCAP 1808, 023 (2018).

  14. K. Belotsky, R. Budaev, A. Kirillov, and M. Laletin, JCAP 1701, 021 (2017).

  15. K. Belotsky, A. Kamaletdinov, M. Laletin, and M. Solovyov, Phys. Dark Universe 26, 100333 (2019).

    Article  Google Scholar 

  16. J. Buch, P. Ralegankar, and V. Rentala, JCAP 1710, 028 (2017).

  17. K. M. Belotsky, A. A. Kirillov, and M. L. Solovyov, Int. J. Mod. Phys. D 27, 1841010 (2018).

    Article  ADS  Google Scholar 

  18. M. L. Solovyov, M. A. Rakhimova, and K. M. Belotsky, arXiv: 2011.04425.

  19. M. L. Solovyov, K. M. Belotsky, A. H. Kamaletdinov, and E. A. Esipova, J. Phys.: Conf. Ser. 1390, 012096 (2019).

    Google Scholar 

  20. K. M. Belotsky, E. A. Esipova, A. K. Kamaletdinov, E. S. Shlepkina, and M. L. Solovyov, Int. J. Mod. Phys. D 28, 1941011 (2019).

    Article  ADS  Google Scholar 

  21. P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, N. Bartolo, E. Battaner, R. Battye, K. Benabed, A. Benont, A. Benoit-Lévy, J.-P. Bernard, et al., A& A 594, A13 (2016).

  22. P. von Doetinchem, K. Perez, T. Aramaki, S. Baker, S. Barwick, R. Bird, M. Boezio, S. E. Boggs, M. Cui, A. Datta, F. Donato, C. Evoli, L. Fabris, L. Fabbietti, E. Ferronato Bueno, N. Fornengo, et al., J. Cosmol. Astropart. Phys. 2020, 035 (2020).

  23. A. Kounine and S. Ting, PoS (ICHEP2018) 732 (2019).

  24. V. Chechetkin, M. Khlopov, M. Sapozhnikov, and Y. Zeldovich, Phys. Lett. B 118, 329 (1982).

    Article  ADS  Google Scholar 

  25. M. Y. Khlopov, Grav. Cosmol. 4, 69 (1998).

    ADS  Google Scholar 

  26. M. Y. Khlopov, S. G. Rubin, and A. S. Sakharov, Phys. Rev. D 62, 083505 (2000).

    Article  ADS  Google Scholar 

  27. V. Berezinsky, M. Kachelriess, and A. Vilenkin, Phys. Rev. Lett. 79, 4302 (1997).

    Article  ADS  Google Scholar 

  28. E. W. Kolb, D. J. H. Chung, and A. Riotto, AIP Conf. Proc. 484, 91 (1999).

    Article  ADS  Google Scholar 

  29. V. Berezinsky, P. Blasi, and A. Vilenkin, Phys. Rev. D 58, 103515 (1998).

    Article  ADS  Google Scholar 

  30. J. D. M. Neto, in 70th International Conference on Nuclear Physics and Elementary Particle Physics: Nuclear Physics Technologies (2020).

  31. J. Bordes, H.-M. Chan, J. Faridani, J. Pfaudler, and S. T. Tsou, Astropart. Phys. 8, 135 (1998).

    Article  ADS  Google Scholar 

  32. V. V. Alekseev et al., J. Phys.: Conf. Ser. 675, 032004 (2016).

    Google Scholar 

  33. F. Zhang, Eur. Phys. J. Plus 135, 104 (2020).

    Article  Google Scholar 

  34. D. Maurin, H. P. Dembinski, J. Gonzalez, I. C. Maris, and F. Melot, Universe 6, 102 (2020).

    Article  ADS  Google Scholar 

  35. L. A. Anchordoqui, Phys. Rep. 801, 1 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  36. R. Alves Batista, J. Biteau, M. Bustamante, K. Dolag, R. Engel, K. Fang, K.-H. Kampert, D. Kostunin, M. Mostafa, K. Murase, F. Oikonomou, A. V. Olinto, M. I. Panasyuk, G. Sigl, A. M. Taylor, and M. Unger, Front. Astron. Space Sci. 6, 23 (2019).

    Article  ADS  Google Scholar 

  37. M. S. Muzio, M. Unger, and G. R. Farrar, Phys. Rev. D 100, 103008 (2019).

    Article  ADS  Google Scholar 

  38. M. Kachelrießand D. V. Semikoz, Prog. Part. Nucl. Phys. 109, 103710 (2019).

    Article  Google Scholar 

  39. S. Gabici, C. Evoli, D. Gaggero, P. Lipari, P. Mertsch, E. Orlando, A. Strong, and A. Vittino, IJMPD 28, 1930022 (2019).

    Article  ADS  Google Scholar 

  40. L. Tibaldo, D. Gaggero, and P. Martin, Universe 7, 141 (2021).

    Article  ADS  Google Scholar 

  41. A. Cuoco, J. Phys.: Conf. Ser. 1468, 012095 (2020).

    Google Scholar 

  42. I. V. Moskalenko, Doctoral Thesis (2016) [in Rus- sian]. http://www.iki.rssi.ru/diss/2017/moskalenko_ diss.pdf.

  43. A. Tursunov, Z. Stuchlnk, M. Kološ, N. Dadhich, and B. Ahmedov, Astrophys. J. 895, 14 (2020).

    Article  ADS  Google Scholar 

  44. R. Mbarek and D. Caprioli, arXiv: 2105.05262.

  45. X. Rodrigues, J. Heinze, A. Palladino, A. van Vliet, and W. Winter, Phys. Rev. Lett. 126, 191101 (2021).

    Article  ADS  Google Scholar 

  46. F. M. Rieger, PoS (HEPROVII), 019 (2020).

  47. J. Heinze, D. Biehl, A. Fedynitch, D. Boncioli, A. Rudolph, and W. Winter, MNRAS 498, 5990 (2020).

    Article  ADS  Google Scholar 

  48. D. Biehl, D. Boncioli, A. Fedynitch, J. Heinze, A. Rudolph, and W. Winter, PoS (ICRC2019) 196 (2021).

  49. F. Samuelsson, D. Bégué, F. Ryde, A. Pe’er, and K. Murase, ApJ 902, 148 (2020).

    Article  ADS  Google Scholar 

  50. L. Merten, M. Boughelilba, A. Reimer, P. Da Vela, S. Vorobiov, F. Tavecchio, G. Bonnoli, J. P. Lundquist, and C. Righi, Astropart. Phys. 128, 102564 (2021).

    Article  Google Scholar 

  51. B. Eichmann, J. Rachen, L. Merten, A. van Vliet, and J. B. Tjus, JCAP 2018, 036 (2018).

  52. J. H. Matthews, A. R. Bell, A. T. Araudo, and K. M. Blundell, EPJ Web Conf. 210, 04002 (2019).

  53. O. Kalashev, EPJ Web Conf. 125, 02012 (2016).

  54. D. Fargion, P. G. De Sanctis Lucentini, and M. Y. Khlopov, PoS (MULTIF2017) 006 (2018).

Download references

ACKNOWLEDGMENTS

The work of Belotsky K.M. and Solovyov M.L. was supported by the Ministry of Science and Higher Education of the Russian Federation by project no. 0723-2020-0040 ‘‘Fundamental problems of cosmic rays and dark matter’’. We also would like to thank M.Yu. Khlopov and S.G. Rubin for useful discussions and interest to our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Belotsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belotsky, K.M., Solovyov, M.L. & Rakhimova, M.A. Mechanisms of Cosmic Ray Generation. Phys. Atom. Nuclei 85, 92–96 (2022). https://doi.org/10.1134/S1063778822010069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778822010069

Navigation