Skip to main content
Log in

Eligibility of EFT Approach to Search for tqg FCNC Phenomenon

  • ELEMENTARY PARTICLES AND FIELDS/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The Effective Field Theory (EFT) approach is widely used in the search for possible deviations from the predictions of the Standard Model. Such an approximation of possible BSM physics is valid up to a certain levels of energy scale and accuracy. In this article, we investigate potential limitation of the EFT approach related to unitarity to describe possible contributions of flavor-changing neutral currents (FCNC) involving the top quark. The numerical and analytical calculations of the FCNC processes used in the EFT approach demonstrate the constant asymptotic behavior of the total cross section with increasing energy. It is shown that the EFT approach for studying the possible contribution of FCNC does not violate the restrictions following from perturbative unitarity, the asymptotic behavior of the cross section does not exceed the Froissart bound, and the approach itself can be used to set the corresponding experimental limits for FCNC couplings or Wilson coefficients at present and future colliders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The Lagrangian describing the tree–point (tqg) and the four-point (tqgg) interaction vertices (tqg) as well as corresponding Feynman rules were presented in [4]. The Lagrangian describing not only the tree point vertex (tqg), but also the interaction vertex with the Higgs boson (tqgh) as follows from the dimension 6 operators was worked out in [5].

  2. Note that the four-point vertex of the gluon–gluon–top quark–\(u\) quark interaction from (3) was implemented in CompHEP using an auxiliary color octet field with spin two \(t_{\mu\nu}^{a}\), denoted as \(G.t\) in CompHEP, with the propagator defined by the Lagrangian \(-\frac{1}{2}t_{\mu\nu}^{a}t^{\mu\nu}_{a}\). It should be noted that the four-point vertex is necessary for gauge invariance in calculating the contributions with the initial states \(gg\) and \(gu\).

REFERENCES

  1. S. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D 2, 1285 (1970).

    Article  ADS  Google Scholar 

  2. K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014).

    Article  ADS  Google Scholar 

  3. W. Buchmüller and D. Wyler, Nucl. Phys. B 268, 621 (1986).

    Article  ADS  Google Scholar 

  4. E. Malkawi and T. M. Tait, Phys. Rev. D 54, 5758 (1996), hep-ph/9511337.

    Article  ADS  Google Scholar 

  5. J. Aguilar-Saavedra, Nucl. Phys. B 812, 181 (2009), arXiv:0811.3842.

    Article  ADS  Google Scholar 

  6. B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, JHEP 10, 085 (2010), arXiv: 1008.4884 [hep-ph].

  7. S. Willenbrock and C. Zhang, Ann. Rev. Nucl. Part. Sci. 64, 83 (2014), arXiv:1401.0470.

  8. D. Barducci et al., CERN-LPCC-2018-01 (2018), arXiv:1802.07237.

  9. G. Aad et al. (ATLAS), Eur. Phys. J. C 76, 55 (2016), arXiv:1509.00294.

  10. V. Khachatryan et al. (CMS), JHEP 1702, 028 (2017), arXiv:1610.03545.

  11. T. Aaltonen et al. (CDF), Phys. Rev. Lett. 102, 151801 (2009), arXiv:0812.3400.

    Article  ADS  Google Scholar 

  12. V. M. Abazov et al. (D0), Phys. Lett. B 693, 81 (2010), arXiv:1006.3575.

    Article  ADS  Google Scholar 

  13. M. Beneke et al., in Workshop on Standard Model Physics (and more) at the LHC (2000), p. 419, hep-ph/0003033.

  14. A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, D. Kovalenko, A. Kryukov, V. Savrin, S. Shichanin, and A. Semenov (1999), hep-ph/9908288.

  15. E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Ilyin, A. Kryukov, V. Edneral, V. Savrin, A. Semenov, and A. Sherstnev (CompHEP), Nucl. Instrum. Meth. A 534, 250 (2004), hep-ph/0403113.

  16. M. Froissart, Phys. Rev. 123, 1053 (1961).

    Article  ADS  Google Scholar 

  17. CMS Collaboration, CMS-PAS-FTR-18-004 (2018).

  18. E. P. Azzi, S. Farry, P. Nason, and A. Tricoli, CERN Yellow Reports: Monographs 7, 1 (2019). https://e-publishing.cern.ch/index.php/CYRM/ar-ticle/view/950.

  19. L. Dudko, E. Boos, A. Chernoded, M. Perfilov, G. Vorotnikov, and P. Volkov, Tech. Rep. CERN-ACC-2018-0043, CERN, Geneva (2018), https://cds.cern.ch/record/2643278.

  20. A. Abada et al. (FCC), Eur. Phys. J. C 79, 474 (2019).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by grant no. 16-12-10280 of the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. E. Boos, V. E. Bunichev, L. V. Dudko, M. A. Perfilov or G. A. Vorotnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boos, E.E., Bunichev, V.E., Dudko, L.V. et al. Eligibility of EFT Approach to Search for tqg FCNC Phenomenon. Phys. Atom. Nuclei 83, 984–988 (2020). https://doi.org/10.1134/S1063778820060083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820060083

Navigation