Skip to main content
Log in

Heating and Nonequilibrium Distributions of Ions in a Reverse Shock Wave of the SN 1987A Remnant

  • Elementary Particles and Fields Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A hydrodynamical description of supernova remnants is based on the approximation of locally equilibrium particle distributions. Shock waves in supernova remnants at various stages of ejecta propagation are collisionless and form nonequilibrium particle distributions that relax slowly to quasiequilibrium distributions within a time longer than the hydrodynamic time. A kinetic model of the heating of ions behind the front of a shock wave in the SN 1987A remnant is considered with allowance for a complex chemical composition of the ejecta, and nonequilibrium distributions of ions in the vicinity of this shock wave are calculated. In addition to the quasi-Maxwellian peak, which determines the effective temperature of a given charge state of an ion, nonequilibriumdistributions of ions contain, in some cases, a suprethermal component, which may describe to the injection of ions in the process of cosmic-ray acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. S. Imshennik and D. K. Nadezhin, Sov. Astron. Lett. 14, 449 (1988).

    ADS  Google Scholar 

  2. R. McCray and C. Fransson, Ann. Rev. Astron. Astrophys. 54, 19 (2016).

    Article  ADS  Google Scholar 

  3. R. Indebetouw, M. Matsuura, E. Dwek, G. Zanardo, M. J. Barlow, M. Baes, P. Bouchet, D. N. Burrows, R. Chevalier, G. C. Clayton, C. Fransson, B. Gaensler, R. Kirshner, M. Lakićević, K. S. Long, P. Lundqvist, et al., Astrophys. J. Lett. 782, L2 (2014).

    Article  ADS  Google Scholar 

  4. T. M. Potter, L. Staveley-Smith, B. Reville, C.-Y. Ng, G. V. Bicknell, R. S. Sutherland, and A. Y. Wagner, Astrophys. J. 794, 174 (2014).

    Article  ADS  Google Scholar 

  5. E. Dwek and R. G. Arendt, Astrophys. J. 810, 75 (2015).

    Article  ADS  Google Scholar 

  6. E. Michael, R. McCray, R. Chevalier, A. V. Filippenko, P. Lundqvist, P. Challis, B. Suger-man, S. Lawrence, C. S. J. Pun, P. Garnavich, R. Kirshner, A. Crotts, C. Fransson, W. Li, N. Panagia, M. Phillips, et al., Astrophys. J. 593, 809 (2003).

    Article  ADS  Google Scholar 

  7. S. Mattila, P. Lundqvist, P. Gröningsson, P. Meikle, R. Stathakis, C. Fransson, and R. Cannon, Astrophys. J. 717, 1140 (2010).

    Article  ADS  Google Scholar 

  8. J. Larsson, C. Fransson, J. Spyromilio, B. Leibundgut, P. Challis, R. A. Chevalier, K. France, A. Jerkstrand, R. P. Kirshner, P. Lundqvist, M. Matsuura, R. McCray, N. Smith, J. Sollerman, P. Garnavich, K. Heng, et al., Astrophys. J. 833, 147 (2016).

    Article  ADS  Google Scholar 

  9. C. Fransson, J. Larsson, J. Spyromilio, R. Chevalier, P. Gröningsson, A. Jerkstrand, B. Leibundgut, R. McCray, P. Challis, R. P. Kirshner, K. Kjaer, P. Lundqvist, and J. Sollerman, Astrophys. J. 768, 88 (2013).

    Article  ADS  Google Scholar 

  10. C. Fransson, J. Larsson, K. Migotto, D. Pesce, P. Challis, R. A. Chevalier, K. France, R. P. Kirshner, B. Leibundgut, P. Lundqvist, R. McCray, J. Spyromilio, F. Taddia, A. Jerkstrand, S. Mattila, N. Smith, et al., Astrophys. J. Lett. 806, L19 (2015).

    Article  ADS  Google Scholar 

  11. K. France, R. McCray, S. V. Penton, R. P. Kirshner, P. Challis, J. M. Laming, P. Bouchet, R. Chevalier, P. M. Garnavich, C. Fransson, K. Heng, J. Larsson, S. Lawrence, P. Lundqvist, N. Panagia, C. S. J. Pun, et al., Astrophys. J. 743, 186 (2011).

    Article  ADS  Google Scholar 

  12. K. France, in Proceedings of the 296th Symposium of the International Astronomical Union, Raichak on Ganges, Calcutta, India, 2013, Ed. by A. K. Ray and R. M. McCray (Cambridge Univ. Press, Cambridge, 2014), p.1.

  13. K. France, R. McCray, C. Fransson, J. Larsson, K. A. Frank, D. N. Burrows, P. Challis, R. P. Kirshner, R. A. Chevalier, P. Garnavich, K. Heng, S. S. Lawrence, P. Lundqvist, N. Smith, and G. Sonneborn, Astrophys. J. Lett. 801, L16 (2015).

    Article  ADS  Google Scholar 

  14. S. A. Zhekov, R. McCray, K. J. Borkowski, D. N. Burrows, and S. Park, Astrophys. J. 645, 293 (2006).

    Article  ADS  Google Scholar 

  15. S. A. Zhekov, R. McCray, D. Dewey, C. R. Canizares, K. J. Borkowski, D. N. Burrows, and S. Park, Astrophys. J. 692, 1190 (2009).

    Article  ADS  Google Scholar 

  16. The H. E. S. S. Collab., Science 347, 406 (2015).

    Article  ADS  Google Scholar 

  17. S. Orlando, M. Miceli, M. L. Pumo, and F. Bocchino, Astrophys. J. 810, 168 (2015).

    Article  ADS  Google Scholar 

  18. R. A. Chevalier and V. V. Dwarkadas, Astrophys. J. Lett. 452, L45 (1995).

    Article  ADS  Google Scholar 

  19. J. G. Kirk, P. Duffy, and L. Ball, Astrophys. J. Suppl. Ser. 90, 807 (1994).

    Article  ADS  Google Scholar 

  20. D. Winske, Space Sci. Rev. 42, 53 (1985).

    Article  ADS  Google Scholar 

  21. A. P. Matthews, J. Comput. Phys. 112, 102 (1994).

    Article  ADS  Google Scholar 

  22. L. Bennett and D. C. Ellison, J. Geophys. Res. 100, 3439 (1995).

    Article  ADS  Google Scholar 

  23. Yu. A. Kropotina, M. Yu. Gustov, A. M. Krasil’shchikov, K. P. Levenfish, and G. G. Pavlov, NTV SPbGPU, No. 116, 99 (2011).

    Google Scholar 

  24. Yu. A. Kropotina, A. M. Bykov, M. Yu. Gustov, A. M. Krassilchtchikov, and K. P. Levenfish, Tech. Phys. 60, 231 (2015).

    Article  Google Scholar 

  25. Yu. A. Kropotina, A. M. Bykov, A. M. Krasil’shchikov, and K. P. Levenfish, Tech. Phys. 61, 517 (2016).

    Article  Google Scholar 

  26. D. Caprioli and A. Spitkovsky, Astrophys. J. 783, 91 (2014).

    Article  ADS  Google Scholar 

  27. N. Smith, S. A. Zhekov, K. Heng, R. McCray, J. A. Morse, and M. Gladders, Astrophys. J. Lett. 635, L41 (2005).

    Article  ADS  Google Scholar 

  28. A. R. Bell, Mon. Not. R. Astron. Soc. 353, 550 (2004).

    Article  ADS  Google Scholar 

  29. T. N. Kato and H. Takabe, Astrophys. J. Lett. 681, L93 (2008).

    Article  ADS  Google Scholar 

  30. T. N. Kato and H. Takabe, Astrophys. J. 721, 828 (2010).

    Article  ADS  Google Scholar 

  31. C. Kozma and C. Fransson, Astrophys. J. 496, 946 (1998).

    Article  ADS  Google Scholar 

  32. C. Kozma and C. Fransson, Astrophys. J. 497, 431 (1998).

    Article  ADS  Google Scholar 

  33. S. E. Woosley, P. A. Pinto, P. G. Martin, and T. A. Weaver, Astrophys. J. 318, 664 (1987).

    Article  ADS  Google Scholar 

  34. W. D. Arnett, J. N. Bahcall, R. P. Kirshner, and S. E. Woosley, Ann. Rev. Astron. Astrophys. 27, 629 (1989).

    Article  ADS  Google Scholar 

  35. E. I. Sorokina, S. I. Blinnikov, D. I. Kosenko, and P. Lundqvist, Astron. Lett. 30, 737 (2004).

    Article  ADS  Google Scholar 

  36. A. M. Bykov, P. E. Gladilin, and S. M. Osipov, Mon. Not. R. Astron. Soc. 429, 2755 (2013).

    Article  ADS  Google Scholar 

  37. D. Caprioli, D. T. Yi, and A. Spitkovsky, arXiv: 1704.08252.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Kropotina.

Additional information

Original Russian Text © Yu.A. Kropotina, A.M. Bykov, A.V. Kozlova, A.M. Krassilchtchikov, K.P. Levenfish, S.I. Blinnikov, 2018, published in Yadernaya Fizika, 2018, Vol. 81, No. 1, pp. 125–131.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kropotina, Y.A., Bykov, A.M., Kozlova, A.V. et al. Heating and Nonequilibrium Distributions of Ions in a Reverse Shock Wave of the SN 1987A Remnant. Phys. Atom. Nuclei 81, 139–145 (2018). https://doi.org/10.1134/S1063778818010155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778818010155

Navigation