Skip to main content
Log in

Scalaron Decay in Perturbative Quantum Gravity

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A certain quadratic gravity model provides a successfully inflationary scenario. The inflation is driven by the new scalar degree of freedom called scalaron. After the end of inflation the scalaron decays in matter and dark matter degrees of freedom reheating the Universe. We study new channels by which the scalaron can transfer energy to the matter sector. These channels are annihilation and decay via intermediate graviton states. Results are obtained within perturbative quantum gravity. In the heavy scalaron limit only scalar particles are produced by the annihilation channel. Scalaron decays in all types of particles are allowed. In the light scalaron limit decay channel is strongly suppressed. Boson production via the annihilation channel is expected to be dominant at the early stages of reheating, while fermion production will dominate later stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. A. Accioly, S. Ragusa, H. Mukai, and E. C. de Rey Neto, Int. J. Theor. Phys. 39, 1599 (2000). https://doi.org/10.1023/A:1003632311419

    Article  Google Scholar 

  2. A. Hindawi, B. A. Ovrut, and D. Waldram, Phys. Rev. D 53, 5583 (1996). https://doi.org/10.1103/PhysRevD.53.5583

    Article  ADS  MathSciNet  Google Scholar 

  3. R. H. Dicke, Phys. Rev. 125, 2163 (1962). https://doi.org/10.1103/PhysRev.125.2163

    Article  ADS  MathSciNet  Google Scholar 

  4. K. i. Maeda, Phys. Rev. D 39, 3159 (1989). https://doi.org/10.1103/PhysRevD.39.3159

    Article  ADS  MathSciNet  Google Scholar 

  5. V. Faraoni, E. Gunzig, and P. Nardone, Fund. Cosm. Phys. 20, 121 (1999).

  6. A. de Felice and S. Tsujikawa, Living Rev. Rel. 13, 3 (2010). https://doi.org/10.12942/lrr-2010-3

  7. A. A. Starobinsky, Phys. Lett. B 91, 99 (1980). https://doi.org/10.1016/0370-2693(80)90670-X

    Article  ADS  Google Scholar 

  8. Y. Akrami et al. (Planck Collab.), Astron. Astrophys. 641, A10 (2020). https://doi.org/10.1051/0004-6361/201833887

  9. P. A. R. Ade et al. (BICEP and Keck. Collab.), Phys. Rev. Lett. 127, 151301 (2021). https://doi.org/10.1103/PhysRevLett.127.151301

  10. D. Paoletti, F. Finelli, J. Valiviita, and M. Hazumi, arXiv: 2208.10482 [astro-ph.CO].

  11. G. Galloni, N. Bartolo, S. Matarrese, M. Migliaccio, A. Ricciardone, and N. Vittorio, arXiv: 2208.00188 [astro-ph.CO].

  12. A. Vilenkin, Phys. Rev. D 32, 2511 (1985). https://doi.org/10.1103/PhysRevD.32.2511

    Article  ADS  MathSciNet  Google Scholar 

  13. A. S. Koshelev, L. Modesto, L. Rachwal, and A. A. Starobinsky, J. High Energy Phys., No. 11, 067 (2016). https://doi.org/10.1007/JHEP11(2016)067

  14. E. V. Arbuzova, A. D. Dolgov, and L. Reverberi, J. Cosmol. Astropart. Phys., No. 02, 049 (2012). https://doi.org/10.1088/1475-7516/2012/02/049

  15. E. V. Arbuzova, A. D. Dolgov, and R. S. Singh, J. Cosmol. Astropart. Phys., No. 07, 019 (2018). https://doi.org/10.1088/1475-7516/2018/07/019

  16. E. Arbuzova, A. Dolgov, and R. Singh, Symmetry 13, 877 (2021). https://doi.org/10.3390/sym13050877

    Article  ADS  Google Scholar 

  17. B. N. Latosh, Phys. Part. Nucl. 51, 859 (2020). https://doi.org/10.1134/S1063779620050056

    Article  Google Scholar 

  18. C. P. Burgess, Living Rev. Rel. 7, 5 (2004). https://doi.org/10.12942/lrr-2004-5

  19. M. Levi, Rep. Prog. Phys. 83, 075901 (2020). https://doi.org/10.1088/1361-6633/ab12bc

  20. X. Calmet, Int. J. Mod. Phys. D 22, 1342014 (2013). https://doi.org/10.1142/S0218271813420145

  21. P. Vanhove, arXiv: 2104.10148 [gr-qc].

  22. G. ‘t Hooft and M. J. G. Veltman, Ann. Inst. H. Poincare Phys. Theor. A 20, 69 (1974)

    ADS  Google Scholar 

  23. M. H. Goroff and A. Sagnotti, Phys. Lett. B 160, 81 (1985). https://doi.org/10.1016/0370-2693(85)91470-4

    Article  ADS  Google Scholar 

  24. D. Prinz, Class. Quantum Grav. 38, 215003 (2021). https://doi.org/10.1088/1361-6382/ac1cc9

  25. B. S. DeWitt, Phys. Rev. 162, 1239 (1967). https://doi.org/10.1103/PhysRev.162.1239

    Article  ADS  Google Scholar 

  26. S. Sannan, Phys. Rev. D 34, 1749 (1986). https://doi.org/10.1103/PhysRevD.34.1749

    Article  ADS  Google Scholar 

  27. G. ‘t Hooft and M. J. G. Veltman, Ann. Inst. H. Poincare Phys. Theor. A 20, 69 (1974).

    ADS  Google Scholar 

  28. M. H. Goroff and A. Sagnotti, Phys. Lett. B 160, 81 (1985). https://doi.org/10.1016/0370-2693(85)91470-4

    Article  ADS  Google Scholar 

  29. D. Prinz, Class. Quantum Grav. 38, 215003 (2021). https://doi.org/10.1088/1361-6382/ac1cc9

  30. B. S. DeWitt, Phys. Rev. 162, 1239 (1967). https://doi.org/10.1103/PhysRev.162.1239

    Article  ADS  Google Scholar 

  31. S. Sannan, Phys. Rev. D 34, 1749 (1986). https://doi.org/10.1103/PhysRevD.34.1749

    Article  ADS  Google Scholar 

  32. B. Latosh, Class. Quantum Grav. 39, 165006 (2022). https://doi.org/10.1088/1361-6382/ac7e15

  33. R. Mertig, M. Bohm, and A. Denner, Comput. Phys. Commun. 64, 345 (1991) https://doi.org/10.1016/0010-4655(91)90130-D

    Article  ADS  Google Scholar 

  34. V. Shtabovenko, R. Mertig, and F. Orellana, Comput. Phys. Commun. 256, 107478 (2020). https://doi.org/10.1016/j.cpc.2020.107478

  35. H. H. Patel, Comput. Phys. Commun. 197, 276 (2015). https://doi.org/10.1016/j.cpc.2015.08.017

    Article  ADS  MathSciNet  Google Scholar 

  36. H. H. Patel, Comput. Phys. Commun. 218, 66 (2017). https://doi.org/10.1016/j.cpc.2017.04.015

    Article  ADS  MathSciNet  Google Scholar 

  37. V. Shtabovenko, Comput. Phys. Commun. 218, 48 (2017). https://doi.org/10.1016/j.cpc.2017.04.014

  38. S. Mandelstam, Phys. Rev. 115, 1741 (1959). https://doi.org/10.1103/PhysRev.115.1741

    Article  ADS  MathSciNet  Google Scholar 

  39. S. Mandelstam, Phys. Rev. 112, 1344 (1958). https://doi.org/10.1103/PhysRev.112.1344

    Article  ADS  MathSciNet  Google Scholar 

  40. S. M. Bilenky, Introduction to Feynman Diagrams and Electroweak Interactions Physics (Nauka, Moscow, 1995) [in Russian].

    Google Scholar 

  41. S. Weinberg, The Quantum Theory of Fields (Cambridge Univ. Press, Cambridge, 2005).

    MATH  Google Scholar 

  42. M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley, Reading, MA, 1995).

    Google Scholar 

  43. Y. B. Zeldovich, Adv. Astron. Astrophys. 3, 241 (1965). https://doi.org/10.1016/b978-1-4831-9921-4.50011-9

    Article  ADS  Google Scholar 

  44. B. W. Lee and S. Weinberg, Phys. Rev. Lett. 39, 165 (1977). https://doi.org/10.1103/PhysRevLett.39.165

    Article  ADS  Google Scholar 

  45. G. Passarino and M. J. G. Veltman, Nucl. Phys. B 160, 151 (1979). https://doi.org/10.1016/0550-3213(79)90234-715

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to A. Arbuzov, E. Arbuzova, and A. Dolgov for fruitful discussions.

Funding

The work was supported by the RSCF grant 22-22-00294.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Latosh.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latosh, B.N. Scalaron Decay in Perturbative Quantum Gravity. J. Exp. Theor. Phys. 136, 555–566 (2023). https://doi.org/10.1134/S1063776123050023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123050023

Navigation