Skip to main content
Log in

Effect of a Dipole–Dipole Interaction on the Time of Magnetization Reversal of Finite-Length Atomic Chains

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The magnetization reversal of atomic chains on metal surfaces has been theoretically studied using the analytical method developed earlier and the geodesic nudged elastic band method. The atomic chains can be divided into the following three types: chains with a small, intermediate, and large domain wall width. A dipole–dipole interaction is shown to cause an increase in the average spontaneous magnetization reversal time of FM|| and AFM⊥ chains and a decrease in the magnetization reversal time of FM⊥ and AFM|| chains. For FM⊥ and AFM⊥ chains with a medium-width domain wall, taking into account a dipole–dipole interaction leads to the appearance of an energy barrier between two states of a domain wall differing in the direction of rotation of magnetic moments. The magnetization reversal of atomic chains from the third type can occur in the following two ways: all magnetic moments are reversed either simultaneously or one by one. The transition from one magnetization reversal mode to another occurs at a critical length N0. The effect of a dipole–dipole interaction is most significant when the chain length is close to N0. Numerical estimations have shown that taking into account a dipole–dipole interaction can change the magnetization reversal time of a chain by an order of magnitude in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).

    Article  ADS  Google Scholar 

  2. N. D. Mermin, Quantum Computer Science: An Introduction (Cambridge Univ. Press, Cambridge, 2007).

    Book  MATH  Google Scholar 

  3. S. Bose, Phys. Rev. Lett. 91, 207901 (2003).

  4. H. Verma, L. Chotorlishvili, J. Berakdar, and S. K. Mishra, Eur. Phys. Lett. 119, 30001 (2017).

    Article  ADS  Google Scholar 

  5. D. J. Choi, N. Lorente, J. Wiebe, K. von Bergmann, A. F. Otte, and A. J. Heinrich, Rev. Mod. Phys. 91, 041001 (2019).

  6. A. G. Syromyatnikov, S. V. Kolesnikov, A. M. Saletsky, and A. L. Klavsyuk, Phys. Usp. 64, 671 (2021).

    Article  ADS  Google Scholar 

  7. A. G. Syromyatnikov, S. V. Kolesnikov, A. M. Saletsky, and A. L. Klavsyuk, Mater. Lett. 179, 69 (2016).

    Article  Google Scholar 

  8. P. Gambardella, A. Dallmeyer, K. Maiti, M. C. Malagoli, W. Eberhardt, K. Kern, and C. Carbone, Nature (London, U.K.) 416, 301 (2002).

    Article  ADS  Google Scholar 

  9. P. Gambardella, A. Dallmeyer, K. Maiti, M. C. Malagoli, S. Rusponi, P. Ohresser, W. Eberhardt, C. Carbone, and K. Kern, Phys. Rev. Lett. 93, 077203 (2004).

  10. S. Loth, S. Baumann, C. P. Lutz, D. M. Eigler, and A. J. Heinrich, Science (Washington, DC, U. S.) 335, 196 (2012).

    Article  ADS  Google Scholar 

  11. S. Yan, D.-J. Choi, J. A. J. Burgess, S. Rolf-Pissarczyk, and S. Loth, Nat. Nanotechnol. 10, 40 (2015).

    Article  ADS  Google Scholar 

  12. J.-P. Gauyacq and N. Lorente, J. Phys.: Condens. Matter 27, 455301 (2015).

  13. W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).

    Article  ADS  Google Scholar 

  14. H. Ebert, D. Ködderitzsch, and J. Minár, Rep. Prog. Phys. 74, 096501 (2011).

  15. E. M. Chudnovsky and L. Gunther, Phys. Rev. Lett. 60, 661 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  16. W. Wernsdorfer, R. Clérac, C. Coulon, L. Lecren, and H. Miyasaka, Phys. Rev. Lett. 95, 237203 (2005).

  17. A. S. Smirnov, N. N. Negulyaev, W. Hergert, A. M. Saletsky, and V. S. Stepanyuk, New J. Phys. 11, 063004 (2009).

  18. L. D. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935).

    Google Scholar 

  19. K. Tao, O. P. Polyakov, and V. S. Stepanyuk, Phys. Rev. B 93, 161412 (R), (2016).

  20. M. E. I. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics (Oxford Univ. Press, Oxford, 2001).

    MATH  Google Scholar 

  21. Y. Li and B.-G. Liu, Phys. Rev. B 73, 174418 (2006).

  22. Y. Li and B.-G. Liu, Phys. Rev. Lett. 96, 217201 (2006).

  23. K. M. Tsysar, S. V. Kolesnikov, and A. M. Saletsky, Chin. Phys. B 24, 097302 (2015).

  24. S. V. Kolesnikov, K. M. Tsysar, and A. M. Saletsky, Phys. Solid State 57, 1513 (2015).

    Article  ADS  Google Scholar 

  25. D. I. Bazhanov, O. V. Stepanyuk, O. V. Farberovich, and V. S. Stepanyuk, Phys. Rev. B 93, 035444 (2016).

  26. K. M. Tsysar, S. V. Kolesnikov, I. I. Sitnikov, and A. M. Saletsky, Mod. Phys. Lett. B 31, 1750142 (2017).

  27. L. Trallori, Phys. Rev. B 57, 5923 (1998).

    Article  ADS  Google Scholar 

  28. A. P. Popov, A. V. Anisimov, O. Eriksson, and N. V. Skorodumova, Phys. Rev. B 81, 054440 (2010).

  29. A. P. Popov, A. Rettori, and M. G. Pini, Phys. Rev. B 92, 024414 (2015).

  30. S. Kolesnikov and I. Kolesnikova, Europhys. Lett. 137, 56003 (2022).

    Article  ADS  Google Scholar 

  31. S. V. Kolesnikov, JETP Lett. 103, 588 (2016).

    Article  ADS  Google Scholar 

  32. S. V. Kolesnikov and I. N. Kolesnikova, J. Exp. Theor. Phys. 125, 644 (2017).

    Article  ADS  Google Scholar 

  33. S. V. Kolesnikov and I. N. Kolesnikova, Phys. Rev. B 100, 224424 (2019).

  34. S. V. Kolesnikov and I. N. Kolesnikova, IEEE Magn. Lett. 10, 2509105 (2019).

  35. S. Kolesnikov and E. Sapronova, IEEE Magn. Lett. 13, 2501205 (2022).

  36. P. F. Bessarab, V. M. Uzdin, and H. Jónsson, Comput. Phys. Commun. 196, 335 (2015).

    Article  ADS  Google Scholar 

  37. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

  38. J. J. van der Broek and H. Zijlstra, IEEE Trans. Magn. 7, 226 (1971).

    Article  ADS  Google Scholar 

  39. H. Hashemi, G. Fischer, W. Hergert, and V. S. Stepanyuk, J. Appl. Phys. 107, 09E311 (2010).

  40. A. G. Syromyatnikov, A. M. Saletsky, and A. L. Klavsyuk, J. Magn. Magn. Mater. 510, 166896 (2020).

Download references

ACKNOWLEDGMENTS

We used the computer power of the Research Computing Center, Moscow State University (RCC, MSU).

Funding

This work was supported by the Russian Science Foundation, project no. 2172-20034. One of the authors (E.S.S.) is a fellow of the Theoretical Physics and Mathematics Advancement Foundation BASIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kolesnikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, S.V., Sapronova, E.S. Effect of a Dipole–Dipole Interaction on the Time of Magnetization Reversal of Finite-Length Atomic Chains. J. Exp. Theor. Phys. 135, 690–697 (2022). https://doi.org/10.1134/S1063776122110097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122110097

Navigation