Skip to main content
Log in

Microwave Giant Magnetoresistance and Ferromagnetic and Spin-Wave Resonances in (CoFe)/Cu Nanostructures

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The microwave phenomena that occur in magnetic multilayer (CoFe)/Cu nanostructures, which have a giant magnetoresistance, are studied. The transmission of waves through a nanostructure is used to investigate the microwave giant magnetoresistance effect. The changes in the transmission coefficient at frequencies of 29–38 GHz are found to exceed the relative magnetoresistance, which distinguishes the system under study from the nanostructures studied earlier. Ferromagnetic and spin-wave resonances are used to study the angular dependences of the microwave absorption spectra of a multilayer (CoFe/Cu)n nanostructure. The following parameters are determined: the critical angle that determines the boundaries of the ranges of excitation of uniform and nonuniform spin modes, the type of boundary conditions describing the pinning of spins on the outer nanostructure surfaces, and the surface anisotropy and exchange interaction constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. L. A. Prozorova and A. S. Borovik-Romanov, JETP Lett. 10, 201 (1969).

    ADS  Google Scholar 

  2. A. S. Borovik-Romanov, Lectures on Low-Temperature Magnetism. Magnetic Symmetry of Antiferromagnets (Inst. Fiz. Problem im. P. L. Kapitsy RAN, Moscow, 2010), p. 55 [in Russian].

  3. M. N. Baibich, J. M. Broto, A. Fert, et al., Phys. Rev. Lett. 6, 2472 (1988).

    ADS  Google Scholar 

  4. G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).

    ADS  Google Scholar 

  5. J. J. Krebs, P. Lubitz, A. Chaiken, and G. A. Prinz, J. Appl. Phys. 69, 4795 (1991).

    ADS  Google Scholar 

  6. V. V. Ustinov, A. B. Rinkevich, L. N. Romashev, and V. I. Minin, J. Magn. Magn. Mater. 177181, 1205 (1998).

  7. A. B. Rinkevich, L. N. Romashev, and V. V. Ustinov, J. Exp. Theor. Phys. 90, 834 (2000).

    ADS  Google Scholar 

  8. A. B. Rinkevich, M. A. Milyaev, L. N. Romashev, and D. V. Perov, Phys. Met. Metall. 119, 1297 (2018).

    Google Scholar 

  9. A. B. Rinkevich, Ya. A. Pakhomov, E. A. Kuznetsov, A. S. Klepikova, M. A. Milyaev, L. I. Naumova, and V. V. Ustinov, Tech. Phys. Lett. 45, 225 (2019).

    ADS  Google Scholar 

  10. L. Dreher et al., Phys. Rev. B 87, 224422 (2013).

    ADS  Google Scholar 

  11. A. Layadi, Phys. Rev. B 66, 184423 (2002).

    ADS  Google Scholar 

  12. J. Smith and H. G. Beljers, Philips Res. Rep. 10, 113 (1955).

    Google Scholar 

  13. J. O. Artman, Phys. Rev. 105, 74 (1957).

    ADS  Google Scholar 

  14. C. Kittel, Phys. Rev. 110, 1295 (1958).

    ADS  MathSciNet  Google Scholar 

  15. W. S. Ament and G. T. Rado, Phys. Rev. 97, 1558 (1955).

    ADS  Google Scholar 

  16. H. Puszkarski, Prog. Surf. Sci. 9, 191 (1979).

    ADS  Google Scholar 

  17. H. Puszkarski and P. Tomczak, Surf. Sci. Rep. 72, 351 (2017).

    ADS  Google Scholar 

  18. Yu. A. Korchagin, R. G. Khlebopros, and N. S. Chistyakov, Fiz. Met. Metalloved. 34, 1303 (1972).

    Google Scholar 

  19. A. M. Portis, Appl. Phys. Lett. 2 (4), 69 (1963).

    ADS  Google Scholar 

  20. E. Schlömann, J. Appl. Phys. 36, 1193 (1965).

    ADS  Google Scholar 

  21. R. S. Iskhakov, L. A. Chekanova, and I. G. Vazhenina, Bull. Russ. Acad. Sci.: Phys. 77, 1265 (2013).

    Google Scholar 

  22. V. A. Ignatchenko and D. S. Tsikalov, in Proceedings of the 6th Euro-Asion Symposium on Trends in MAGnetism,2016, p. 264.

  23. R. S. Iskhakov, S. V. Stolyar, M. V. Chizhik, and L. A. Chekanova, JETP Lett. 94, 301 (2011).

    ADS  Google Scholar 

  24. R. S. Iskhakov, C. V. Stolyar, L. A. Chekanova, and M. V. Chizhik, Phys. Solid State 54, 748 (2012).

    ADS  Google Scholar 

  25. Yu. A. Korchagin, R. G. Khlebopros, and N. S. Chistyakov, Sov. Phys. Solid State 14, 1826 (1972).

    Google Scholar 

  26. N. M. Salanskii and M. Sh. Erukhimov, Physical Properties and Application of Magnetic Films (Nauka, Novosibirsk, 1975) [in Russian].

    Google Scholar 

  27. A. G. Gurevich, Magnetic Resonance in Ferrites and Antiferromagnetics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  28. V. M. Sokolov and B. A. Tavger, Sov. Phys. Solid State 10, 1412 (1968).

    Google Scholar 

  29. N. S. Bannikova, M. A. Milyaev, L. I. Naumova, V. V. Proglyado, T. P. Krinitsina, I. Yu. Kamenskii, and V. V. Ustinov, Phys. Met. Metallogr. 116, 987 (2015).

    ADS  Google Scholar 

  30. N. S. Bannikova, M. A. Milyaev, L. I. Naumova, E. I. Patrakov, V. V. Proglyado, I. Yu. Kamenskii, M. V. Ryabukhina, and V. V. Ustinov, Phys. Met. Metallogr. 119, 1073 (2018).

    ADS  Google Scholar 

  31. A. B. Rinkevich, M. I. Samoilovich, S. M. Klescheva, D. V. Perov, A. M. Burkhanov, and E. A. Kuznetsov, IEEE Trans. Nanotechnol. 13, 3 (2014).

    ADS  Google Scholar 

  32. T. Rausch, T. Szczurek, and M. Schlesinger, J. Appl. Phys. 85, 314 (1999).

    ADS  Google Scholar 

  33. A. Rinkevich, L. Romashev, M. Milyaev, E. Kuztetsov, M. Angelakeris, and P. Poulopoulos, J. Magn. Magn. Mater. 317, 15 (2007).

    ADS  Google Scholar 

  34. V. V. Ustinov, A. B. Rinkevich, L. N. Romashev, M. A. Milyaev, A. M. Burkhanov, N. N. Sidun, and E. A. Kuznetsov, Phys. Met. Metallogr. 99, 486 (2005).

    Google Scholar 

  35. D. P. Belozorov, V. N. Derkach, S. V. Nedukh, A. G. Ravlik, S. T. Roschenko, I. G. Shipkova, S. I. Tarapov, and F. Yildiz, Int. J. Infrared Millimeter Waves 22, 1669 (2001).

    Google Scholar 

  36. D. E. Endean, J. N. Heyman, S. Maat, and E. Dan Dahlberg, Phys. Rev. 84, 212405 (2011).

    Google Scholar 

  37. A. B. Granovsky, A. A. Kozlov, T. V. Bagmut, S. V. Nedukh, S. I. Tarapov, and J. P. Clerc, Phys. Solid State 47, 738 (2005).

    ADS  Google Scholar 

  38. J. C. Jackuet and T. Valet, in Proceedings of the Mater. Res. Soc. Symposium on Magnetic Ultrathin Films, Multilayers and Surfaces, USA, San Francisco, 1995, MRS Symp. Proc. 384, 477 (1995).

  39. I. D. Lobov, M. M. Kirillova, L. N. Romashev, M. A. Milyaev, and V. V. Ustinov, Phys. Solid State 51, 2480 (2009).

    Google Scholar 

  40. V. V. Ustinov, A. B. Rinkevich, L. N. Romashev, A. M. Burkhanov, and E. A. Kuznetsov, Phys. Met. Metallogr. 96, 291 (2003).

    Google Scholar 

  41. D. V. Perov and A. B. Rinkevich, Phys. Met. Metallogr. 120, 333 (2019).

    ADS  Google Scholar 

  42. J. T. Yu, R. A. Turk, and P. E. Wigen, Phys. Rev. B 11, 420 (1975).

    ADS  Google Scholar 

  43. H. Suhl, Phys. Rev. 97, 555 (1955).

    ADS  Google Scholar 

  44. P. E. Wigen, C. F. Kooi, M. R. Shanabarger, U. K. Cummings, and M. E. Baldwin, J. Appl. Phys. 34, 1137 (1963).

    ADS  Google Scholar 

  45. A. B. Drovosekov, O. V. Zhotikova, N. M. Kreines, V. F. Meshcheryakov, M. A. Milyaev, L. N. Romashev, V. V. Ustinov, and D. I. Kholin, J. Exp. Theor. Phys. 89, 986 (1999).

    ADS  Google Scholar 

  46. C. Kittel, Phys. Rev. 73, 155 (1948).

    ADS  Google Scholar 

  47. I. G. Vazhenina, R. S. Iskhakov, M. V. Rautskii, M. A. Milyaev, and L. I. Naumova, Phys. Solid State 62, 153 (2020).

    ADS  Google Scholar 

  48. A. Layadi, Phys. Rev. B 63, 174410 (2001).

    ADS  Google Scholar 

  49. J. A. Hagmann, K. Traudt, Y. Y. Zhou, X. Liu, M. Dobrowolska, and J. K. Furdyna, J. Magn. Magn. Mater. 360, 137 (2014).

    ADS  Google Scholar 

  50. A. Stankov, in Proceedings of the International Symposium on Physics of Magnetic Films (1968), p. 422.

  51. R. S. Iskhakov, N. A. Shepeta, S. V. Stolyar, L. A. Chekanova, and V. Yu. Yakovchuk, JETP Lett. 83, 28 (2006).

    Google Scholar 

Download references

Funding

This work was performed in terms of project Spin no. AAAA-A18-118020290104-2 and project Function no. AAAA-A19-119012990095-0. Section 3 was supported by the Russian Science Foundation, project no. 17-12-01002.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Ustinov, A. B. Rinkevich or I. G. Vazhenina.

Ethics declarations

This article was prepared for the special issue dedicated to the centenary of A.S. Borovik-Romanov.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ustinov, V.V., Rinkevich, A.B., Vazhenina, I.G. et al. Microwave Giant Magnetoresistance and Ferromagnetic and Spin-Wave Resonances in (CoFe)/Cu Nanostructures. J. Exp. Theor. Phys. 131, 139–148 (2020). https://doi.org/10.1134/S1063776120070171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120070171

Navigation