Skip to main content
Log in

Control of the motion of nanoelectromechanical systems based on carbon nanotubes by electric fields

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A new method is proposed for controlling the motion of nanoelectromechanical systems based on carbon nanotubes. In this method, a single-walled nanotube acquires an electric dipole moment owing to the chemical adsorption of atoms or molecules at open ends of the nanotube. The electric dipole moments of carbon nanotubes with chemically modified ends are calculated by the molecular orbital method. These nanotubes can be set in motion under the effect of a nonuniform electric field. The possibility of controlling the motion of nanoelectromechanical systems with the proposed method is demonstrated using a nanotube-based gigahertz oscillator as an example. The operating characteristics of the gigahertz oscillator are analyzed, and its operation is simulated by the molecular dynamics method. The controlling parameters and characteristics corresponding to the controlled operating conditions at a constant frequency for the system under investigation are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Yu, O. Lourie, M. J. Dyer, et al., Science (Washington) 287, 637 (2000).

    Article  ADS  Google Scholar 

  2. J. Cumings and A. Zettl, Science (Washington) 289, 602(2000).

    Article  ADS  Google Scholar 

  3. A. Kis, K. Jensen, S. Aloni, et al., Phys. Rev. Lett. 97, 025501 (2006).

  4. A. M. Fennimore, T. D. Yuzvinsky, W. Q. Han, et al., Nature (London) 424, 408 (2003).

    Article  ADS  Google Scholar 

  5. B. Bourlon, D. C. Glatti, L. Forro, and A. Bachtold, Nano Lett. 4, 709 (2004).

    Article  Google Scholar 

  6. R. E. Tuzun, D. W. Noid, and B. G. Sumpter, Nanotechnology 6, 52 (1995).

    Article  ADS  Google Scholar 

  7. D. W. Srivastava, Nanotechnology 8, 186 (1997).

    Article  ADS  Google Scholar 

  8. L. Forro, Science (Washington) 289, 560 (2000).

    Article  Google Scholar 

  9. Q. Zheng and Q. Jiang, Phys. Rev. Lett. 88, 045503 (2002).

  10. Q. Zheng, J. Z. Liu, and Q. Jiang, Phys. Rev. B: Condens. Matter 65, 245409 (2002).

    Google Scholar 

  11. Z. C. Tu and X. Hu, Phys. Rev. B: Condens. Matter 72, 033404 (2005).

    Google Scholar 

  12. L. Maslov, Nanotechnology 17, 2475 (2006).

    Article  ADS  Google Scholar 

  13. A. M. Popov, E. Bichoutskaia, Yu. E. Lozovik, and A. S. Kulish, Phys. Status Solidi A 204, 1911 (2007).

    Article  Google Scholar 

  14. R. Saito, R. Matsuo, T. Kimura, et al., Chem. Phys. Lett. 348, 187 (2001).

    Article  ADS  Google Scholar 

  15. Yu. E. Lozovik, A. V. Minogin, and A. M. Popov, Phys. Lett. A 313, 112 (2003).

    Article  ADS  Google Scholar 

  16. Yu. E. Lozovik, A. V. Minogin, and A. M. Popov, Pis’ma Zh. Éksp. Teor. Fiz. 77(11), 759 (2003) [JETP Lett. 77 (11), 631 (2003)].

    Google Scholar 

  17. Yu. E. Lozovik and A. M. Popov, Fullerenes, Nanotubes, Carbon Nanostruct. 12, 485 (2004).

    Article  Google Scholar 

  18. Yu. E. Lozovik, A. G. Nikolaev, and A. M. Popov, Zh. Éksp. Teor. Fiz. 130(3), 516 (2006) [JETP 103 (3), 449 (2006)].

    Google Scholar 

  19. S. S. Kuznetsov, Yu. E. Lozovik, and A. M. Popov, Fiz. Tverd. Tela (St. Petersburg) 49(5), 951 (2007) [Phys. Solid State 49 (5), 1004 (2007)].

    Google Scholar 

  20. S. B. Legoas, V. R. Coluci, S. F. Braga, et al., Nanotechnology 15, S184 (2004).

    Article  ADS  Google Scholar 

  21. J. W. Kang and H. J. Hwang, J. Appl. Phys. 96, 3900 (2004).

    Article  ADS  Google Scholar 

  22. S. Bandow, M. Takizawa, K. Hirahara, et al., Chem. Phys. Lett. 337, 48 (2001).

    Article  ADS  Google Scholar 

  23. J. W. Kang, K. O. Song, O. K. Kwon, and H. J. Hwang, Nanotechnology 16, 2670 (2005).

    Article  ADS  Google Scholar 

  24. J. J. P. Stewart, New Polymeric Mater. 1, 53 (1987).

    Google Scholar 

  25. J. J. P. Stewart, J. Comput. Chem. 10, 209 (1989).

    Article  Google Scholar 

  26. O. N. Bubel’, S. A. Vyrko, E. F. Kislyakov, and N. A. Poklonskioe, Pis’ma Zh. Éksp. Teor. Fiz. 71(12), 741 (2000) [JETP Lett. 71 (12), 508 (2000)].

    Google Scholar 

  27. J. L. Rivera, C. McCabe, and P. P. Cummings, Nano Lett. 3, 1001 (2003).

    Article  Google Scholar 

  28. J. L. Rivera, C. McCabe, and P. P. Cummings, Nanotechnology 16, 186 (2005).

    Article  ADS  Google Scholar 

  29. S. B. Legoas, V. R. Coluci, S. F. Braga, et al., Phys. Rev. Lett. 90, 055504 (2003).

    Google Scholar 

  30. Y. Zhao, C.-C. Ma, G. Chen, and Q. Jiang, Phys. Rev. Lett. 91, 175504 (2003).

  31. W. Guo, Y. Guo, H. Gao, et al., Phys. Rev. Lett. 91, 125501 (2003).

  32. J. Servantie and P. Gaspard, Phys. Rev. Lett. 91, 185503 (2003).

    Google Scholar 

  33. C.-C. Ma, Y. Zhao, Y.-C. Yam, et al., Nanotechnology 16, 1253 (2005).

    Article  ADS  Google Scholar 

  34. P. Tangney, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 93, 065503 (2004).

    Google Scholar 

  35. E. Bichoutskaia, M. I. Heggie, Yu. E. Lozovik, and A. M. Popov, Phys. Rev. B: Condens. Matter 73, 045435 (2006).

    Google Scholar 

  36. http://amber.scripps.edu//#ff.

  37. D. W. Brenner, O. A. Shenderova, J. A. Harrison, et al., J. Phys.: Condens. Matter 14, 783 (2002).

    Article  ADS  Google Scholar 

  38. A. V. Belikov, Yu. E. Lozovik, A. G. Nikolaev, and A. M. Popov, Chem. Phys. Lett. 385, 72 (2004).

    Article  ADS  Google Scholar 

  39. L. Verlet, Phys. Rev. 159, 98 (1967).

    Article  ADS  Google Scholar 

  40. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, et al., J. Chem. Phys. 81, 3684 (1984).

    Article  ADS  Google Scholar 

  41. N. A. Abdullaev, R. A. Suleoemanov, M. A. Aldzhanov, and L. N. Alieva, Fiz. Tverd. Tela (St. Petersburg) 44(10), 1775 (2002) [Phys. Solid State 44 (10), 1859 (2002)].

    Google Scholar 

  42. J. L. Hutchison, N. A. Kiselev, E. P. Krinichnaya, et al., Carbon 39, 761 (2001).

    Article  Google Scholar 

  43. H. Zhu, C. Xu, B. Wei, and D. Wu, Carbon 40, 2023(2002).

    Article  Google Scholar 

  44. L. Ci, Z. Pao, Z. Zhou, et al., Chem. Phys. Lett. 359, 63(2002).

    Article  ADS  Google Scholar 

  45. J. Wei, B. Jiang, X. Znang, et al., Chem. Phys. Lett. 376,753 (2003).

    Article  ADS  Google Scholar 

  46. H. Zhu, M. Yudasaka, and S. Iijima, Chem. Phys. Lett. 380, 496 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Ershova.

Additional information

Original Russian Text © O.V. Ershova, Yu.E. Lozovik, A.M. Popov, O.N. Bubel’, E.F. Kislyakov, N.A. Poklonskiĭ, A.A. Knizhnik, I.V. Lebedeva, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 4, pp. 762-771.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ershova, O.V., Lozovik, Y.E., Popov, A.M. et al. Control of the motion of nanoelectromechanical systems based on carbon nanotubes by electric fields. J. Exp. Theor. Phys. 107, 653–661 (2008). https://doi.org/10.1134/S1063776108100130

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108100130

PACS numbers

Navigation