Skip to main content
Log in

Calculation of the wave functions of the ground and weakly excited states of helium II

  • Order, Disorder, and Phase Transitions in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The wave functions of the ground (Ψ0) and the first excited (Ψk) states of He II in the second-order approximation, i.e., up to the first two corrections to the corresponding solutions for a weakly nonideal Bose gas, are determined by the collective variable method, which was proposed by Bogolyubov and Zubarev and developed in the studies by Yukhnovskii and Vakarchuk. The functions Ψ0 and Ψk = ψkΨ0 are determined as the eigenfunctions of the N-particle Schrödinger equation from a system of coupled equations for Ψ0, Ψk, and the quasiparticle spectrum E(k) of helium II. The results consist in the following: (1) these equations are solved numerically for a higher order approximation compared with those investigated earlier (the first-order approximation), and (2) Ψ0 and ψk are derived from a model potential of interaction between He4 atoms (rather than from the structure factor as earlier) in which the potential barrier is joined with the attractive potential found from experiment. The height V 0 of the potential barrier is a free parameter. Except for V 0, the model does not have any free parameters or functions. The calculated values of the structure factor, the ground-state energy E 0, and the quasiparticle spectrum E(k) of He II are in agreement with the experimental values for V 0 ≈ 100 K. The second-order correction to the logarithm of Ψ0 significantly affects the value of E 0 and provides the asymptotics E(k → 0) = ck, while the second-order correction to ψk slightly affects the E(k). The second-order corrections to Ψ0 and ψk have a smaller effect on the results compared with the first-order corrections, whereby the theory is in agreement with experiment; therefore, one may assume that the truncated Ψ0 and ψk well describe the microstructure of He II. Thus, the series for Ψ0 and Ψk can be truncated in spite of the fact that the expansion parameter is not very small (∼1/2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau, J. Phys. (Moscow) 5, 71 (1941).

    Google Scholar 

  2. L. Landau, J. Phys. (Moscow) 11, 91 (1947).

    Google Scholar 

  3. R. Feynman, Phys. Rev. 94, 262 (1954).

    ADS  MATH  Google Scholar 

  4. R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956).

    Article  ADS  Google Scholar 

  5. K. A. Brueckner and K. Savada, Phys. Rev. 106, 1117, 1128 (1957); K. A. Brueckner, Theory of Nuclear Structure (London, 1959; Mir, Moscow, 1964).

    ADS  MathSciNet  Google Scholar 

  6. R. Jastrow, Phys. Rev. 98, 1479 (1955).

    Article  ADS  MATH  Google Scholar 

  7. W. L. McMillan, Phys. Rev. A 138, 442 (1965); D. Schiff and L. Verlet, Phys. Rev. 160, 208 (1967); M. H. Kalos, M. A. Lee, P. A. Whitlock, et al., Phys. Rev. B 24, 115 (1981); T. McFarland, S. A. Vitiello, L. Reatto, et al., Phys. Rev. B 50, 13577 (1994).

    ADS  Google Scholar 

  8. C.-W. Woo and R. L. Coldwell, Phys. Rev. Lett. 29, 1062 (1972).

    Article  ADS  Google Scholar 

  9. E. Feenberg, Ann. Phys. (N.Y.) 84, 128 (1974).

    Article  Google Scholar 

  10. H. W. Jackson and E. Feenberg, Rev. Mod. Phys. 34, 686 (1962); D. K. Lee and F. J. Lee, Phys. Rev. B 11, 4318 (1975).

    Article  ADS  Google Scholar 

  11. E. Manousakis and V. P. Pandharipande, Phys. Rev. B 30, 5062 (1984).

    Article  ADS  Google Scholar 

  12. C. E. Campbell, Phys. Lett. A 44, 471 (1973); C. C. Chang and C. E. Campbell, Phys. Rev. B 15, 4238 (1977); E. Krotscheck, Phys. Rev. B 33, 3158 (1986).

    Article  ADS  Google Scholar 

  13. B. E. Clements, H. Godfrin, E. Krotscheck, et al., J. Low Temp. Phys. 102, 1 (1996).

    Article  Google Scholar 

  14. L. Reatto, G. L. Masserini, and S. A. Vitiello, Physica B (Amsterdam) 197, 189 (1994); D. E. Galli, L. Reatto, and S. A. Vitiello, J. Low Temp. Phys. 101, 755 (1995).

    ADS  Google Scholar 

  15. I. P. Yukhnovs’kii and I. O. Vakarchuk, Vestn. Akad. Nauk Ukr. RSR, No. 9, 32 (1977).

  16. I. A. Vakarchuk and I. R. Yukhnovskii, Teor. Mat. Fiz. 40, 100 (1979).

    Google Scholar 

  17. I. A. Vakarchuk and I. R. Yukhnovskii, Teor. Mat. Fiz. 42, 112 (1980).

    Google Scholar 

  18. I. A. Vakarchuk, Teor. Mat. Fiz. 80, 439 (1989).

    Google Scholar 

  19. I. A. Vakarchuk, Teor. Mat. Fiz. 82, 438 (1990).

    Google Scholar 

  20. T. Nishiyama, Prog. Theor. Phys. 45, 730 (1971).

    Article  ADS  Google Scholar 

  21. S. Sunakawa, Sh. Yamasaki, and T. Kebukawa, Prog. Theor. Phys. 41, 919 (1969); 44, 565 (1970).

    Article  ADS  Google Scholar 

  22. G. Barucchi, G. Ponzano, and T. Regge, in Quanten und Felder (Vieweg, Braunschweig, 1972), p. 279.

    Google Scholar 

  23. J. Gavoret and P. Nozieres, Ann. Phys. 28, 349 (1964).

    Google Scholar 

  24. A. Zavadski, S. Ruvalds, and J. Solana, Phys. Rev. A 5, 399 (1972).

    ADS  Google Scholar 

  25. D. Pines, Can. J. Phys. 65, 1357 (1987).

    ADS  Google Scholar 

  26. H. R. Glyde and A. Griffin, Phys. Rev. Lett. 65, 1454 (1990).

    Article  ADS  Google Scholar 

  27. Yu. M. Poluektov, Fiz. Nizk. Temp. 28, 604 (2002) [Low Temp. Phys. 28, 429 (2002)]; É. A. Pashitskiĭ and S. I. Vil’chinskiĭ, Fiz. Nizk. Temp. 27, 253 (2000) [Low Temp. Phys. 27, 185 (2000)].

    Google Scholar 

  28. E. A. Pashitskii, S. V. Mashkevich, and S. I. Vilchinskyy, Phys. Rev. Lett. 89, 075 301 (2002); J. Low Temp. Phys. 134, 851 (2004).

    Google Scholar 

  29. A. A. Rovenchak, Fiz. Nizk. Temp. 29, 145 (2003) [Low Temp. Phys. 29, 105 (2003)].

    Google Scholar 

  30. M. D. Tomchenko, Ukr. J. Phys. 50, 720 (2005).

    Google Scholar 

  31. N. N. Bogolyubov, J. Phys. (Moscow) 11, 23 (1947).

    MathSciNet  Google Scholar 

  32. S. T. Belyaev, Zh. Éksp. Teor. Fiz. 34, 417 (1958) [Sov. Phys. JETP 7, 289 (1958)]; 433 (1958) [299 (1958)].

    MATH  Google Scholar 

  33. N. N. Bogolyubov and D. N. Zubarev, Zh. Éksp. Teor. Fiz. 28, 129 (1955) [Sov. Phys. JETP 1, 83 (1956)].

    MathSciNet  Google Scholar 

  34. Y. Imry, Ann. Phys. (N.Y.) 51, 1 (1969).

    Article  Google Scholar 

  35. M. D. Tomchenko, J. Low Temp. Phys. (in press).

  36. A. Bijl, Physica (Amsterdam) 7, 869 (1940).

    Article  MATH  Google Scholar 

  37. R. A. Aziz, V. P. S. Nain, J. S. Carley, et al., J. Chem. Phys. 70, 4330 (1979); A. R. Jansen and R. A. Aziz, J. Chem. Phys. 107, 914 (1997).

    ADS  Google Scholar 

  38. A. L. J. Burgmans, J. M. Farrar, and J. T. Lee, J. Chem. Phys. 64, 1345 (1976).

    Article  ADS  Google Scholar 

  39. R. Feltgen, H. Pauly, F. Torello, et al., Phys. Rev. Lett. 30, 820 (1973).

    ADS  Google Scholar 

  40. I. O. Vakarchuk, V. V. Babin, and A. A. Rovenchak, J. Phys. Stud. 4, 16 (2000).

    Google Scholar 

  41. R. Ahlrichs, P. Penco, and G. Skoles, Chem. Phys. 19, 119 (1976).

    Google Scholar 

  42. R. De Bruyn Ouboter, Physica B (Amsterdam) 144, 127 (1987); P. R. Roach, J. B. Ketterson, and C.-W. Woo, Phys. Rev. A 2, 543 (1970).

    Google Scholar 

  43. A. F. Verlan’ and V. S. Sizikov, Integral Equations: A Handbook (Naukova Dumka, Kiev, 1986) [in Russian].

    Google Scholar 

  44. B. N. Esel’son, V. N. Grigor’ev, V. G. Ivantsov, and E. Ya. Rudavskii, The Properties of Liquid and Solid Helium (Izd. Standartov, Moscow, 1978) [in Russian].

    Google Scholar 

  45. F. H. Wirth and R. B. Hallock, Phys. Rev. B 35, 89 (1987).

    Article  ADS  Google Scholar 

  46. E. C. Svensson, V. F. Sears, A. D. B. Woods, et al., Phys. Rev. 21, 3638 (1980).

    ADS  Google Scholar 

  47. R. J. Donnelly, J. A. Donnelly, and R. N. Hills, J. Low Temp. Phys. 44, 471 (1981).

    Article  Google Scholar 

  48. É. A. Pashitskii, private communication.

  49. M. D. Tomchenko, Fiz. Nizk. Temp. 32, 53 (2006) [Low Temp. Phys. 32, 53 (2006)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.D. Tomchenko, 2006, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 129, No. 1, pp. 157–169.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomchenko, M.D. Calculation of the wave functions of the ground and weakly excited states of helium II. J. Exp. Theor. Phys. 102, 137–148 (2006). https://doi.org/10.1134/S106377610601016X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377610601016X

PACS numbers

Navigation