Skip to main content
Log in

Application of the Crystal Structure of the SARS-CoV-2 Spike Protein for the Development of a Peptide Vaccine against Virus

  • CRYSTALLOGRAPHY IN BIOLOGY AND MEDICINE
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Based on the spike protein of the SARS-CoV-2 virus, a protein capable of causing an immune answer has been predicted. The protein stability in solution is confirmed by the molecular dynamics simulation. Immunomodulation has shown that this protein causes an immune reaction and, correspondingly, may serve a vaccine prototype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. J. F.-W. Chan, S. Yuan, K.-H. Kok, et al., Lancet 395 (10223), 514 (2020). https://doi.org/10.1016/S0140-6736(20)30154-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. N. Zhu, D. Zhang, W. Wang, et al., N. Engl. J. Med. 382, 727 (2020). https://doi.org/10.1056/NEJMoa2001017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. WHO, Coronavirus Disease (COVID-19) Dashboard (World Heal. Organ, 2020).

  4. WHO, Clinical Management of Severe Acute Respiratory Infection When Novel Coronavirus (2019-nCoV) Infection Is Suspected: Interim Guidance.

  5. G. S. Randhawa, M. P. M. Soltysiak, H. El Roz, et al., PLoS ONE 16 (1), 0232391 (2020). https://doi.org/10.1371/journal.pone.0232391

  6. K. Dongwan, J.-Y. Lee, J.-S. Yang, et al., Cell 181 (4), 914 (2020). https://doi.org/10.1016/j.cell.2020.04.011

    Article  CAS  Google Scholar 

  7. WHO, Draft Landscape of COVID-19 Candidate Vaccines (WHO, Geneva, 2020).

    Google Scholar 

  8. R. F. Smith Trevor, A. Patel, S. Ramos, et al., Nat. Commun. 11, 2610 (2020). https://doi.org/10.1038/s41467-020-16505-0

    Article  ADS  CAS  Google Scholar 

  9. J. Mulligan Mark, K. E. Lyke, N. Kitchin, et al., Nature 586, 589 (2020). https://doi.org/10.1038/s41586-020-2639-4

    Article  ADS  CAS  PubMed  Google Scholar 

  10. F.-C. Zhu, X.-H. Guan, Y.-H. Li, et al., Lancet 396 (10249), 479 (2020). https://doi.org/10.1016/S0140-6736(20)31605-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Q. Gao, L. Bao, H. Mao, et al., Science 369 (6499), 77 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Y. Cao, A. Yisimayi, F. Jian, et al., Nature 608, 593 (2022). https://doi.org/10.1038/s41586-022-04980-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. T. M. Gallagher and M. J. Buchmeier, Virology 279 (2), 371 (2001). https://doi.org/10.1006/viro.2000.0757

    Article  CAS  PubMed  Google Scholar 

  14. https://pymol.org/2/

  15. M. J. Abraham, T. Murtola, R. Schulz, et al., SoftwareX 1, 19 (2015). https://doi.org/10.1016/j.softx.2015.06.001

    Article  ADS  Google Scholar 

  16. K. Lindorff-Larsen, S. Piana, K. Palmo, et al., Proteins 78, 1950 (2010). https://doi.org/10.1002/prot.22711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsterenvan, et al., J. Chem. Phys. 81 (8), 3684 (1984). https://doi.org/10.1063/1.448118

    Article  ADS  CAS  Google Scholar 

  18. M. Parrinello and A. Rahman, J. Chem. Phys. 76 (5), 2662 (1982). https://doi.org/10.1063/1.443248

    Article  ADS  CAS  Google Scholar 

  19. B. Hess, H. Bekker, J. C. Herman, et al., J. Comput. Chem. 18, 1463 (1997). https://doi.org/10.1002/(SICI)1096

    Article  CAS  Google Scholar 

  20. T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98 (12), 10089 (1993). https://doi.org/10.1063/1.464397

    Article  ADS  CAS  Google Scholar 

  21. https://kraken.iac.rm.cnr.it/C-IMMSIM/index.php

  22. R. V. Luckheeram, R. Zhou, A. D. Verma, and B. Xia, J. Immunol. Res. 925135 (2012). https://doi.org/10.1155/2012/925135

  23. N. Rapin, O. Lund, M. Bernaschi, and F. Castiglione, PubMed (2010). https://doi.org/10.1371/journal.pone.000986

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the Federal Science and Technology Program for the Development of Synchrotron and Neutron Studies and Research Infrastructure for 2019–2027 (agreement no. 075-15-2021-1355 on October 12, 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ivanovsky.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanovsky, A.S., Kolesnikov, I.A., Kordonskaya, Y.V. et al. Application of the Crystal Structure of the SARS-CoV-2 Spike Protein for the Development of a Peptide Vaccine against Virus. Crystallogr. Rep. 68, 951–954 (2023). https://doi.org/10.1134/S1063774523601065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523601065

Navigation