Skip to main content
Log in

Growth of Linear Acene Crystals and Determination of Their Sublimation Enthalpy under Conditions of Physical Vapor Transport

  • CRYSTAL GROWTH
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The centimeter-sized naphthalene, anthracene, and tetracene crystals have been grown from the vapor phase. An isothermal thermogravimetric method for determining the sublimation enthalpy during crystal growth under conditions of classical physical vapor transport is proposed. The sublimation enthalpy has been calculated using the obtained approximate equation for the temperature dependence of the intensity of the flux of molecules sublimating from the solid surface in the quasi-steady-state mode. The sublimation enthalpies of the linear acenes under study have been determined in narrow temperature ranges to be 71 ± 2 kJ mol–1 (328–353 K), 96 ± 3 kJ mol–1 (423–458 K), and 124 ± 11 kJ mol–1 (513–573 K) for naphthalene, anthracene, and tetracene, respectively. The found values are in good agreement with the experimental data in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. A. Laudise, C. Kloc, P. G. Simpkins, and T. Siegrist, J. Cryst. Growth 187, 449 (1998). https://doi.org/10.1016/S0022-0248(98)00034-7

    Article  ADS  Google Scholar 

  2. V. A. Postnikov, N. I. Sorokina, M. S. Lyasnikova, et al., Crystals 10, 363 (2020). https://doi.org/10.3390/cryst10050363

    Article  Google Scholar 

  3. V. A. Postnikov, A. A. Kulishov, O. V. Borshchev, et al., Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 1, 28 (2021). https://doi.org/10.31857/s1028096021010131

  4. V. A. Postnikov, A. A. Kulishov, M. S. Lyasnikova, et al., Zh. Fiz. Khim. 95, 1101 (2021). https://doi.org/10.31857/S0044453721070220

    Article  Google Scholar 

  5. J. P. Murray, K. J. Cavell, and J. O. Hill, Thermochim. Acta 36, 97 (1980). https://doi.org/10.1016/0040-6031(80)80114-6

    Article  Google Scholar 

  6. L. A. Torres-Gómez, G. Barreiro-Rodríguez, and A. Galarza-Mondragón, Thermochim. Acta 124, 229 (1988). https://doi.org/10.1016/0040-6031(88)87025-4

    Article  Google Scholar 

  7. M. Knudsen, Ann. Phys. 333, 999 (1909). https://doi.org/10.1002/andp.19093330505

    Article  Google Scholar 

  8. M. A. V. Ribeiro da Silva, M. J. S. Monte, and L. M. N. B. F. Santos, J. Chem. Thermodyn. 38, 778 (2006). https://doi.org/10.1016/j.jct.2005.08.013

    Article  Google Scholar 

  9. D. Ambrose, I. J. Lawrenson, and C. H. S. Sprake, J. Chem. Thermodyn. 7, 1173 (1975). https://doi.org/10.1016/0021-9614(75)90038-5

    Article  Google Scholar 

  10. C. G. de Kruif, T. Kuipers, J. C. van Miltenburget, et al., J. Chem. Thermodyn. 13, 1081 (1981). https://doi.org/10.1016/0021-9614(81)90006-9

    Article  Google Scholar 

  11. O. T. Glukhova, N. M. Arkhangelova, A. B. Teplitsky, et al., Thermochim. Acta 95, 133 (1985). https://doi.org/10.1016/0040-6031(85)80041-1

    Article  Google Scholar 

  12. B. T. Grayson and L. A. Fosbraey, Pestic. Sci. 13, 269 (1982). https://doi.org/10.1002/ps.2780130308

    Article  Google Scholar 

  13. K. Nass, D. Lenoir, and A. Kettrup, Angew. Chem. Int. Ed. Engl. 34, 1735 (1995). https://doi.org/10.1002/anie.199517351

    Article  Google Scholar 

  14. O. Shalev and M. Shtein, Org. Electron. 14, 94 (2013). https://doi.org/10.1016/j.orgel.2012.09.033

    Article  Google Scholar 

  15. R. V. Ralys, G. S. Yablonsky, and A. A. Slobodov, Sci. Tech. J. Inf. Technol. Mech. Opt. 15, 1072 (2015). https://doi.org/10.17586/2226-1494-2015-15-6-1072-1080

    Article  Google Scholar 

  16. W. Zielenkiewicz, G. L. Perlovich, and M. Wszelaka-Rylik, J. Thermal Anal. Calorim. 57, 225 (1999). https://doi.org/10.1023/A:1010179814511

    Article  Google Scholar 

  17. P. V. Lebedev-Stepanov, Introduction into Self-Organization and Self-Assembly of Nanoparticle Ensembles (NRNU MEPhI, Moscow, 2015) [in Russian].

  18. I. S. Grigor’ev and E. Z. Meilikhov, Physical Values: A Handbook (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  19. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, Part 1 (Fizmatlit, Moscow, 2002; Pergamon, Oxford, 1984).

  20. D. W. J. Cruickshank, Acta Crystallogr. 10, 504 (1957). https://doi.org/10.1107/s0365110x57001826

    Article  Google Scholar 

  21. C. P. Brock and J. D. Dunitz, Acta Crystallogr. B 46, 795 (1990). https://doi.org/10.1107/S0108768190008382

    Article  Google Scholar 

  22. J. M. Robertson, V. C. Sinclair, and J. Trotter, Acta Crystallogr. 14, 697 (1961). https://doi.org/10.1107/s0365110x61002151

    Article  Google Scholar 

  23. R. D. Chirico, S. E. Knipmeyer, and W. V. Steele, J. Chem. Thermodyn. 34, 1873 (2002). https://doi.org/10.1016/S0021-9614(02)00262-8

    Article  Google Scholar 

  24. P. Goursot, H. L. Girdhar, and E. F. Westrum, J. Phys. Chem. 74, 2538 (1970). https://doi.org/10.1021/j100706a022

    Article  Google Scholar 

  25. M. Fulem, V. Laštovka, M. Straka, et al., J. Chem. Eng. Data 53, 2175 (2008). https://doi.org/10.1021/je800382b

    Article  Google Scholar 

  26. B. Stevens, J. Chem. Soc. 2973 (1953). https://doi.org/10.1039/jr9530002973

  27. L. Malaspina, R. Gigli, and G. Bardi, J. Chem. Phys. 59, 387 (1973). https://doi.org/10.1063/1.1679817

    Article  ADS  Google Scholar 

  28. R. Bender, V. Bieling, and G. Maurer, J. Chem. Thermodyn. 15, 585 (1983). https://doi.org/10.1016/0021-9614(83)90058-7

    Article  Google Scholar 

  29. F. Emmenegger and M. Piccand, J. Therm. Anal. Calorim. 57, 235 (1999). https://doi.org/10.1023/A:1010100531350

    Article  Google Scholar 

  30. M. A. Siddiqi, R. A. Siddiqui, and B. Atakan, J. Chem. Eng. Data 54, 2795 (2009). https://doi.org/10.1021/je9001653

    Article  Google Scholar 

  31. V. Oja, X. Chen, M. R. Hajaligol, and W. G. Chan, J. Chem. Eng. Data 54, 730 (2009). https://doi.org/10.1021/je800395m

    Article  Google Scholar 

  32. P. E. Fielding and A. G. Mackay, Aust. J. Chem. 17, 1288 (1964). https://doi.org/10.1071/CH9641288

    Article  Google Scholar 

  33. G. C. Morris, J. Mol. Spectrosc. 18, 42 (1965). https://doi.org/10.1016/0022-2852(65)90059-7

    Article  ADS  Google Scholar 

  34. N. Wakayama and H. Inokuchi, Bull. Chem. Soc. Jpn. 40, 2267 (1967). https://doi.org/10.1246/bcsj.40.2267

    Article  Google Scholar 

  35. V. Oja and E. M. Suuberg, J. Chem. Eng. Data 43, 486 (1998). https://doi.org/10.1021/je970222l

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The experiments were carried out using equipment of the Center for Collective Use “Structural Diagnostics of Materials.”

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within the State assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Postnikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Postnikov, V.A., Kulishov, A.A., Yurasik, G.A. et al. Growth of Linear Acene Crystals and Determination of Their Sublimation Enthalpy under Conditions of Physical Vapor Transport. Crystallogr. Rep. 67, 608–615 (2022). https://doi.org/10.1134/S1063774522040137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522040137

Navigation